| e
| 1U, PU, Pol, KU

|nsigh’rs on.. s e
EMBEDDED SYSTEM

eatures
| INSTANT NOTES

@ Solution to large number of numencals o
. including that from past exams: T Sikh

i T e i i AR A e SR A
Scanned with CamScanner

Chapter 1 Chapter 3

IN'I'RODUCTION TO EMBEDDE] Sy : SOFTWARE DESIGN ISSUES

1.1 Embedded System Overview ... e STEM 157 Bt ATCRUMBOIIIC .o aonamusssiimiapassammmmieimms 46
1.2 Classification of Embedded SYStems /3.2 Operation........... e 48
50

"33 Programmer’s VIEWc....oumsrissessnns sl

“™434 Development Environment A————_ .

1.2.2° Classification Based on C
omple ' aus
Perﬁnmance o, p Xlty ang 4 3.4.1 Tools for Implementation and Verification Phase....54

1.2.1 Classification Based on Geﬂeran(;;"m -

FLOW . iereeeeereeeeeeveeseessessessesssessnssesesnssenees 56
1.3 ‘Hardware and SOﬁWﬂI’e ina System ey 3. 4 2 De51gn ow
1.4 Purpose and Appli wree 3.5 Application-Specific Instruction Set Processors............... 5_8
' 141 pplicatior OfEmbedded Systemg . 3.6 Selecting @ MiCIOPIOCESSOTouvmuiururirsiarsiesessannssnnssannns 60
Purpose of Embedded Systems......... e 3.7 General-Purpose Processor Desigcccreureenesevsncences 61
1.4.2 - Applications of g _ _
pp 0} Embedded SYStems ll Chapter 4 ;
Chapter 2 _ | - MEMORY
; - HARDWARE DESIGN ISSUES 341 TAEGHIRHDN o ey susgorsiOT
2.1 Combination Logic.... 42 Memory Write Ability and Storage Permanence.............. 68
¢ LOMBINALON LOGIC....vrvoeencescrrsssnsissssesmrssersssm,. 1 ,
!‘ 2.1.1 Basic CDmbmatlonaI Logic Design... ; 4.3 + Common MEMOTY TYPES w.ualiiiiiiiiimimsaioisssassimvis 70
i eSS ALS 80
2.1.2 RT-Level Combmatlonal Components...............,]] i Composmg. Memory............l.l..._. """" 83
2.2 Sequential Loglc ..] 4.5 zdser;loryMchrarclg and iac B s SR SRS o
221 RTL .5.1. Memory Hierarchy..........ccecuun.ce. RN - OO,
evel Sequential ComPONENtS ... 4.5.2. CaChe MEMOIY.....coneooeeeseoeeseesviosesssessssssssnene 84
- 22.2 Sequential Logic Design............... ... 16
2.3 Cus_tom Single-Purpose Processor DICHIREE cominasmsnncesens 18 Chiapter 5 . oy —
2. 3 1 8§ S g . ' ; INTERFACING
teps for Designing Single-Purpose Processor...20 - . .
232 D 5.1 Communication BaSiCS.......eccuevrvrivvverrnrerersererseeerns S 90
esign Example of a Single-Purpose Processor. 2 o ot
233 RT Level Custom B - 5.2 Microprocessor Intérfacing e 97
Desxgnge- e % 521, VO Adressing e vveeesuvesssssesssnsivssessisssine 97
"""""""""""" 5.2.2. " Interrupts — Interrupt Driven VOccccoveeerene. 99
2.4 Optimizing Custom Single-P e P P
B oM Processors 3 5.2.3. Direct Memory Access — DMA controller102
Solution to Important Questions
Practice Design Qu lﬁ - o 38 KBIERIN .o mmsitsmmmansmmssres pd7 s 103 o
: g o ‘ons """ 54 Multilevel Bus Architectures 108

PO N ST TSN

Scanned with CamScanner

5.5 Advanced Communication Principles,
5.6 Serial, Parallel and Wireless Protocolg o

Chapter 6 !
~ REAL TIME OPERATING SYSTEM e
6.1 Operatmg System Basics.........cvvuippn - o |
611 The Kemel oo ly
~ 6.1.2. Real Time Kernel... O 1
6.1.3. Kernel Space and User Space -l
6.1.4. Types of Kemel ... e
62 Task Process and Threads............___ ¥
6.2.1 Process 3
- 6.2.2. Threads v :
6.3 Mult1pr0cessmg and Multltaskmg:ij
6.3.1. Context SWIChIng. ... scmvutisnsmiiiisiinn o 1%
6.3.2. Types of Multitasking..... ol
6.4 TaskSchedulmg............,..........._ 13
6.5 Task Synchromzatlon .. |
6.5.1. Task Communlcanon/Synchromzatlon Issues...14)
© 65.2. Task Synchronization Techmques -
6.6 Device i T RN S S 14
Solution to Important Questmns : W
Chapter 7 . .
' " CONTROL SYSTEMS =~ i
AL O, o oot B o SR 18
7.2 Open-Loop and Closed-Loop Control Systems OverVICW 138
7.2.1 Open-Loop Control Systemsoew 198
7.2.2 Closed-Loop Control SYSLEISovvvssrsnsnesereee™ 19

7.2.3 Comparison of Open-Loop and Closed Loop
-Control Systems

.....
...

)

7. 2 4 Open and Closed Loop Control System Design

J25C:11 1)) TS v0rsn 160
73 General Control Systems and PID Controllers 167
7.3.1 Control OBJECLIVES ..uvuveriivrmreneirassecrimsssscnsssnnens 167
73.2. Modeling Real Physical SyStems..........ceesuseeess 169
7.3.3. Controller Design................ ijdssivpiveaes —— 169
74 Software Coding of PID Controllerc.ooovuevismssnneneees 174
7.5 PID TUNING oot 176
7.6 Practical Issues Related to Computer- Based.Control
7.7 Benefits of Computer-Based Control Implementation...178
Chapter 8 :)
' IC TECHNOLOGY
8.1 . INETOAUCHION ...oovveseresssciveensarenssnnsenssssssssessssssssssssssasssseses 179
8.1.1 IC Manufacturing Processceeceeesseessusesssioeeas 181
812 PhOtONthOEAPRY...ccrroveverccemmnrerssssissesssssee 183
8.2 Full-Custom (VLSI) IC Technologycccccsesseesncses: ..187
8.3 Semi-Custom (ASIC) IC Technology R 189
© 83.1 Gate Array Semi-Custom IC Technology 189
'83.2 Standard Cell Semi-Custom IC Technology190
8.4 Programmable Logic Device (PLD) IC Technology191
Solution to Important Qnestioﬁe 193
Chapter 9 . |
MICROCONTROLLERS IN EMBEDDED SYSTEMS
'9.1 ‘Intel 8051 Microcontroller Family, its Architecture and
T Tt e S 195
9.2 Assembly Language Programming.......... R Doy 209
9.2.1 Assembly Language Programming Format.......209
9:2.2 Delay Calculation in Assembly Program........;..213
9.3 Interfacing with Seven Segment Displayi.......cce-- 214

Solution to Important Questions

Scanned with CamScanner

176

L

1U.1 Infroduction..

10.2 VHDL Code Structure %
103 Dats t Dot 2 INTRODUCTION TO EMBEDDED SYSTEM
ypes, Data Objects and Operators %, Embedded System Overview
104 Statements in VHDL ..ol e, By e Classification of Embedded Systems
10.5 Standard Archltectures A " Hardware and Software in a System

10.6 FSM Design

Solution to Important Questlons.............. %0441 Embedded System Overview

_ edded iem s o mmopmm»mfmmocohwr«
teqwmded S
251 1. Introduction % dex kmg sﬁm‘ f i "i::ﬁ%"'““i,‘:{: ::_’2'

An embedded svstem is a combmatlon of hardware and software *¥*™
" designed to perform a specific function. The hardware consists of
mechanical parts and electronic circuits while the software
'1 LQ e 8 b:"‘- b ' represents the program instructions that cause embedded system to
: ; operate its functionality. The programs written for the embedded
systems can also be referred as firmware which is stored in read-only
memory. An example of embedded system can be a digital watch. A
digital watch with simple configuration can contain 4-bit processor,
registers, counters, real-times clocks as electronic components. And
other hardware elements of the watch can be buttons/touch screen
for inputs and screen & speaker for output.

Purpose and Application of Embedded Systems

g
Rl LTI i
",

Embedded svstefns_ are used to control, monitor or assist the
operation of an equipment, machinery or plant. So, an embedded
system may be designed for specific control functions within a larger
system, often with real Eime computing constraints. Hence, in many
cases, an embedded system is a component within some larger
system. For examp'le, modern cars contain embedded systems like
embedded airbag system, navigationl-svstem, adaptive cruise control,
and few others left unmentioned.

2. Characteristics

i.- Single -functiuned: As embedded’ svsten'is are designed for
specific control functions, it usually executes a specific program
to carry out the specific function repeatedly.

ii. Tightly constrained: In a way, tightly constrained means
optimizing the embedded system in various system defining

Introduction to Embedded System lil

Scanned with CamScanner

Co, see—ee—e— T T8 ltes, 4p
mus T— —
. om| size, fast enough
real time and must consume minimy to E
_‘*HL‘L"M?I; x. .Correctness: We can check the functionality throughout the

iii. Reactive and real time: In genera) emb
’ e

. c_c_mtlnuaI;v r_espond to changes in the SVStem,ded s\fsten"s £
must perform instant data procece: > Vil
‘ c . N

Processing withoy Tenpy

computation and slow response ma delay,

operation of the,system. v _reSUIt

elay
3 failyrg iﬂa?l
. . th
Design Metrics

A design metric is a measurable featire of the sy

: ! abl stem's pery,
cost, time for fmplementation-iﬂﬂiﬁﬂz@: Some of .
. = Of the ¢,
MMapf

used metrics include:

I. . NRE cost (non-recurring engineering cost):
monetary cost for designing the system. Sinc
occur more than once for a particular s
nonrecurring.

It re :
Presents y,
€ the cost dyegy
V?te% it is termeq 2
ii. i ST | '
| Unit cost: It is tlhe monetary cost of manufacturing each ynjt
_ the system excluding NRE cost. : 5
iii. Size: It is the' physical sp
iazft:. It ::c. lthe physical Space required by the system. fy
o wareﬁn:' Is measured in terms of bytes and for hardware iti
measured in terms of no of gates or transistors,

i\f. P) - . i y = .
erfﬂl‘lmancE__ It is measured in terms of the execution time o
the system. : .

V. Power: cons .
er: The amount of power consumed by the system, whid

may determine the lifetime of a battery, or the cool§

process of designing the system and we can insert test circuitry

to check that manufacturing was correct.
xi. Safety: The system is supposed to cause no harm.
The Time to Market Design Metric

" Introduction of an embedded system to the markeiplace significantly

affects the overall system profitability. The market window, period

during which the product have highest sales, for products is getting
on_introduction _of product to the

shorter, so a_short dela
marketplace _can_rende
revenue as shown in the figure below,

Using a simplified model of
we will deduce the loss of

" revenue that can occur due to delayed entry of a product in the

.
8

Revenue

market.

b

Peak Revenue

-7

Market

Market
fall

rise

Revenue

Tirne: D
Figure 1.1: Market window and simplified revenue model for loss
calculation for delayed entry

This model assumes the peak of the market occurs at the halfway
point, denoted as W, of the product life. The peak is same for delayed
entry. The revenue for an on-time market entry i

triangle labeled On-time, and for delayed entry is the area of triangle

requirements of the (C
Mo = labeled Delayed. The difference between the areas of two triangles
o tv Thuc'j ability to change the functionality of the syste" gives the revenue loss for a delaved entry.)
out incurring heavy NRE cost. ' On time = Delayed
% 100

vii. Ti z .
Me to prototype: The time needed to build a working vers"

of t :
he system, which may be bigger or costlier than the find-

system implementation,

Revenue Loss = On time

. 1 ; :
Area of on time triangle =35X base x height

viii. Tim ; .
poir: tt: m?rket__ The time required to devglop a system 1 L8 1 2
= atit can be released and sold to customers. ' =g ootk
IX. Maintaij ity o ; e . ’ x
re'e':ta'"ab"'t\i'- The ability to modify the system after It nita (Assuming, market rise angle is B)
se. - _ :
=W tanp

| [2]:Insights on Embedded Sistam ; __.—/ Introduction to Embedded System |3]
Scanned with CamScanner

Area of delayed entry triangie =" < {ZW =D} x (w _
D) tang,

Assuming B = a, and on solving we get, instruction pipelining was introduced for better performance.

Dedicated embedded real time operating system implementation

D(3W-D) ;
Revenue Loss -_-—-?\HT'— x 100% was another important feature in this generation. Also, the concept
: _ of application specific processors like Digital Signal Processors (DSP)
4, Example of an Emhedd.ed System - A Digital camera : and Application Specific Integrated Circuits (ASIC) came into
existence. 2

A digital camera can be taken as embedded system as it
only a single function of capturing image. It is ti Erfory 6
; : . ghtly congty... '™ 4. Fourth Generation

is affordable, portable, and consumes less power Andmamed it Fourth generaiion was marked with the advent of System on-Chip

; ; Ses s oia ' as it . ’

enough to process numeral images in milliseconds, it gy Fa (SoC), reconfigurable processors and multicore processors. These

] . Xhibj
tim P its _
e feature. But however, a simple digital camera may not posrea] embedded systems used high performance real time embedded
SESS . . - :

operating systems for its operation.

high degree of reactive attribute. On the contrary, few cont
digital cameras are capable of detecting human expressions o

1.2 (Classification of Embedded Systems 1.
' These. systems' are designed with a single 8-bit or 16-bit

Embedded systems can be classifie i

R ied using various '

functionality, application, generation, and complexity & aspects lie microcontroller (8051 family, PIC16F8X, Hitachi H8). They have little
we will discuss- the categorization of embedde; s ftel'formance_ But hardware and software complexities and involve board level design. .

~ generation and complexity & performance in this section YR bad They may be battery operated. While developing embedded software

’ ' for these system, an editor, assembler and cross assembler specific to

the microcontroller or processor are used as the main programming

1.2.1 Classification based on Generation
‘tool. Usually C language is used for developing these systems.

1. First Generation '
- 2 ; Automatic vending machine, stepper motor controller for a robotics
e h Is :—.;ms u:lere designed using 8-bit microprocessors or ¢ system, etc. can be the examples of small scale embedded systems.
ontrollers. Hardware circuits were si i y |
iseeeiysigls simple and the firmwae 5 * Medium Scale Embedded Systems
g assembly code. Motor controller using 8085 can ; : : i i
be taken as an example of first gene'ratfon ; dd‘ ; . . These systems are designed with a single or few 16-bit or 32-bit
2 Second G . _ : em ? . ed Sygten. microcontrollers (8051MX, PIC16F8?6}_ or DSPs or Reduced
eneration : A Instruction Set Computers (RISCS). It may also employ the readily

available single purpose processors and IPs for various functions, for

The s T - o
€ systems were built using 16-bit microprocessors and 8/16-t
example: bus interfacing, encryption, deciphering and so on. These

mlc'rocontrolle_rs. More complex and powerful instructions Wer ' _
available for the designer to work with. So tems' involved systems have both hardware and software complexities. For software
embedded operating systems for their é-erat{'rle s;st Acquisition . design, the programming tools used is RTOS, source code engi_neering
Systems can be an example of second gene}:atiorllo:r;'ib:daded :ysterns. tool, simulator, debugger, and integrated development environment

‘3. Third Generation - - - (IDE). Software tools also provide the solutions to the hardware
' ' complexities. Some of the examples of medium scale embedded

The sys ; " : . -
ystems were designed with more advanced ~pro|:es!vﬂr systems are computer networking systems, signal tracking system,

technol for .
microco:iv I In -the form of. 32-bit processors.. siid 16-bit e

ocontrollers. Along with complex and powerful inéiructiorl st | | -
— I ——""/ ; - Introduction to Embedded System |5]

4] Insights on Embeddeq System

--"-_'.‘1: My ¢ . . i 7
B i o Rl s i o A R e

Scanned with CamScanner

*System for wireless LAN & for convergent technolo

sophisticated Embed(}gg’ sqb)\;iterl\llsm ?,ﬂh Large T
Embedded Systems i o) sfa}l
These systems have enormous hardware and Software "

and may need scalable processors or configurable Drocemme"itis‘
programmable logic arrays. They are used fo tutt?so a
applications that need hardware and software . de:g)y
integration in the final system. They are CO“Stl‘ainedl i

processing speeds available in their hardware units, Certaijp, !t
functions are implemented in the hardware to obtain su‘?.lrafE
speed by saving time. Some of the functions of the altmnaf
resources in the system are also implemented by the software'dwart
systems generally implement high performance real time Op;e, fs;
system. Development tools for these systems may not be reatm
available at a reasonable cost or may not be available at+ ad]
cases, a compiler or retargetable compiler might haye B g
developed for these. (A retargetable-compiler is one that conﬁguree
according to the given target configuration in a system). Embeg de:

gy devices s one
of the sophisticated embedded systems. '

L}

Controller Datapath
Control Registers
Logic and
state
register Functional
Units
Data Memory

Figure 1.4: Block diagram of a single purpose processor

The single purpose processor contains controller, datapath and data
memory. Controller is used to generate control signals to carry out
operations in datapath. The datapath contains only the essential
components for the specified task. And SPP contains data memory
for temporary storage during computation. DMA controller can be

Hardware and Software in a system

Single Purpose Processor a <

taken as the examples of single purpose processor. ~Salipw: /0 dvie
2 i} duﬁ:“_ Oltayy

' General Purpose Processor Tovrar® oF s

LI

Single purpose processor (SPP) is a digital circuit designed to execute
exactly one grogr.am. In other words, it is a circuit that represents
program or functionality of a specific task. So, it uire
PIOgram memory in its configuration. In general, SPPs are, uséd for

simple and less tomputation intensive operations in which storel -

Program concept is not req

_ uired. Hence, this simple dedicated ta
oriented configuration makes SPPs small in si £

ower for operation, However, SPP. lacks flexibility a;;sﬁé_deﬂﬁ"

configuration canno
. e used to perfi . he
specified one, Jeriorm operations other than t%¢

The general purpose processor (GPP) is a programmable device that
supports wide range of functionélity. The required functionality is
carried' out by programming the processor’s
Microprocessors_are_the examples of general purpose processor.
GPPs are highly flexible as it supports change of functionality based
on requirement-to-the-extent that the 'given configuration of the
processor supports the operation. For complex and high

computational operations, GPP can be effective as majority

memory.

components of the system will be in operation. However, for simple

operations, memory access will cause the operation to become slow
and additional components might increase power consumption.

~ Scanned with CamScanner

D =] T e
Controller. Datapath ;
L [, program memory, optimized datapath and special functional units.
Control Register These processors provide optimum level of performance maintaining
Logic and . file appropriate size and power consumption. Microcontrollers for
state controlling application and digital signal processors (DSPs) for huge
register . —I\ data processing application are examples of application specific
| General - processors. ;
| ALU
’ " Controller Datapath
IR PC —
A ' Control
e Logic and Registers
A state
Program Data ; | register I |
. . s Custom ¥
Memory Memory _ | & ALU
i ; IR PC
Figure 1.5: Block diagram of a general purpose processor ' Y
. The general purpose processor includes controller, datapath, ¢, Y
and program memory. _ : : Program . ‘Data
i. Controller: It is used to generate control signals baseg g . Memory Memory
instruction provided in the program memory. It consit :
instruction register (IR) and program counter (PC). IR is usedl Figure 1.6: Block diagram of an application specific processor
hold the instruction that needs to be executed and PCis & . e
to sequence thrbugh the instructions. 1.4 Purpose and Appllcatlou of Embedded Systems

- The main purpose of an embedded system is to automate the human
driven activities such that the task can be performed with higher reliability
and eﬁiciency.l And regarding the application of embedded system, it has a
wide range of application that varies from consumer electronics to industrial
equipment, entertainment to academic devices and medical instruments to

ii. Program memory: The program cannot be built or convet
into an equivalent digital circuit in general purpose proce
since the ‘program likely to-run on the processor il

unknown. Hence, program memory is used to store prog®

instructions. _ , weapons and aerospace control systems.

iil. General Datapath: ug!
_ path: The datapath must be general eno¥

handle a variety of compufations so the datapath typh:a“‘f"a 1.4.1 Purpose of Embedded Systems

3 large register file and one or more general p* 1. . Data collection
arithmetic logic units (ALUS) : In’ embedded ‘systems, the data is collected from other external

Application Specific Proce | . devices for storage, analysis, manipulation or transmission. Data m‘a:
. s . P vl ith digi equir
Application specific oro Sors s be in analog or digital form. Systems working with dlgl_tal datla r ::, "
Qptimized for 3 articuTa C‘issors °re Drogr mable_ {r;ind“dg analog to digital converters if the collected data is in analcg .
s T class of applications. It genera :
e : ' introduction to Embedded System 191
18T inatehre mor et o5 g ;

Scanned with CamScanner

The .coﬂected data can DE USEL IR THEETTG U p”fpos .
f the embedded system. For instane, & -
» A (fig;, 0

t and finally provides graphica| e ity l‘:t
tured image. : Dres@,"aﬁ

functionality 0

* collects data, stores |

data in the form of cap

2 | Data communication

| An embedded system is re
which may be at close vicinity or at remote ; g,? "
communication ‘between devices can_ be done via Wired ||.: fon, I
" or wireless medium. Embedqed systems are inmrpu‘ﬂe 4
different wireless modules or wire-line modules for Cﬂm:: \

purpose. For example, if we have to, transfer images g My

quired to connect twg o,
m

. ; : u
camera into Laptop, we can use either WIFI or seria| &m "y 1.4.2
ko : mun. e ——

(using data cable) based on which mode of transmission is s
: o _ o

by. our devices.

3. DataProcessing
The collected data in embedded system is subjected to sone
) . &

processing for which embedded systems are attributed with &
processing modules. Speech coder, audio'video codec, etc canbet
examples of data processing unit. Data processing includs
manipulation of data for appropriate purpose.

4. Monitoring |
Many embedded systems are incorporated with sensors to ched!
state of the different pé(améterg. ‘The harameters can be cu
voltage, temperature, humidity, etc. which areb' continuet
monitored and appropriate processing or 'control,li.ng' of devis
done. However, the value of the parameters cannotbe controle!
the system itself. The values of parameters are used for®
c?ntrollin_g purpose or for some graphical representation puP¥

simply stored folr furthe{' analysis and processing. '

5. Control S

For contr ¥ * . : .
eiiibie dr:;? Purpose, actuators along with sensors are presert"
Py t;s;s:ems. The sensor connected in in.p'ut port det !
esired ' . ut
are controlled acc ‘parameter and the actuators at outp" ;
Electric Motors ' ordingly to implement the desired fu"™
are examples of actuators. In an object

1101 Insights on Embegaan e

"waves to generat

.food items to warm rapidly.

robot, ultrasonic sensor senses the presence of certain kind of object
and the motor is rotated accordingly to avoid the collision.

6. . Application specific user interface

To provide a better user interface based on application has been one
of the concerns of contemporary embedded "systems. Keypads,
simple LCD modules, speakers, etc are basic and common interface
for users. However, sensitive touch pad along with high definition
display has been the sophisticated interface implemented in current

scenario.

Applications of Embedded Systems

The applications of embedded systems are:
1. Household appliam:es: microwave ovens, television, DVD
players and recorders.

Consumer electronics: camera, video games

Office Utility: fax machines, printers, scanners

Business equipment: alarm systems, card readers

Automobiles: engine controller, fuel injection, antilock brakes

o u s wN

Networking: modem, network cards, network switches and
- “routers

Medical equipment: MRI scanner, sonography, blood pressure
-device and glucose test set

8. Security
Let us review one example of embed

household appliancés.

Microwave Oven: Basically, microwave
’ .
e heat by moving water molecules. When caught in

water molecules move very quickly 'in 2

se .motion, alternating back and forth at
s the

ded system related to the

ovens use electromagnetic

electromagnetic waves,

counterclockwise then clockwi
extreme speeds. This movement generates heat energy which cause

The microwave often has a display, keyboard, and a number of

s, Sensors can be a temperature sensor or the sensor
n be the electronic

that controls the

sensors and actuator
that detects whether the door is closed. Actuators ca
switch that controls a microwave tube or a system

ed of a turntable within the microwave.

rotational spe
—

em |11]

Introduction to Embedded Syst

Scanned with CamScanner

- HARDWARE DESIGN 'SSUES simple (when the output gcc:ll.rmn consists of only one high

. Combinational Logic ‘ et value).
Z . { " . .
° Sequentl_al Logic i o . Th.e flnal‘equatlon is translated to an equivalent circuit diagram
= Custom Single-Purpose Processor Design : using logic gates.
. Optimizing Custom Singl_e-Purpose Processors 2. Combinational Logic Design Example
2.1 Combination Logic e E"a""’:" L : e of 2 bank. th _
o ey . o B n an alarm system of a bank, three sensors are implemented and
Com?inatlon_al C_'rcu't 5 R dl'g:'ta! ElrcuIL. witose % the alarm is triggered when at least two sensors detect the change.
function of its present inputs. Combination logic circuits are Made uurej Assuming sensars to output digital values, design a combinational
b fy logic circuit for alarm system. ; '

basic gates or universal gates that are combined or connecteq to
- ity . Beth
produce more complex sw:tchmg‘mrcu:ts. In general, logic e a:e;-l Solution: .
i .
Let a, b, c represent the three sensors and y represents the buzzer for

‘building blocks of combinational logic circuits. it has no memory block
of the examples of the combinational circuits are decoder, mum'sa,, alarm. The output y should be high when two or more than two
' M inputs are high. The truth, table and its corresponding combinational

‘adder, ROM, etc.
design are shown below.

2.1.1 Basic Combinational Logic Design . Truth Table - K:Map
» . . i j i —_— b _
~n combmatmnal logic design, output is purely a function of; ra ey \; ‘00 01 G110
~ present inputs and has no memory_ of past inputs. \e.can use hasicly ojojojof ofojojiy0
e MMWIW@JWM olo|1]o| 1[0 T 1
' in terms of inputs. s et s o]0 y=ac+bc+ab .
1. General Steps for Combinational Logic Design - ol B N E
e The bl oo oo . 4 lola Combinational Circuit
problem description (question) is translated into a 0 .
table with all possible combinations of input values. 1011 b—
. e : : :
* The input values lies on the left of the truth table and ¥ Lix|@)2 L :
corresponding output values*of the inputs lies on the rgft’ o Bl B !
the truth table, , '
. Figure 2.3: Truth table, K-map, and combinational circuit for bank alarm

* Foreacho - ;
: may ccmta.utput, we have to dgnve the Eﬂuations_ The-equaf!i' B
of 4 number of combinations of the inputs. The num® L
combinations depends on the number of high (1) valued 2.1.2 RT-Level Combinational Components
e : . » : -
o colmn of the output. Rows of the inputs aré used ! Register-transfer or RT level com onents are_generall n
mber of input increase,

derive the equation corresponding-to the high output gf ¥ thelddesign of-thew i '
the complexity of the design increase. One of the ways to reduce design

column. And th .
e e E‘quation mUSt be le JRRC I ed.
* Another wayto —— rther minimiz o complexities is by using RT-level components. Multip! r, adder
map. It 1S always borar o Cquation directly by 5% are the examal : ke
Vs better to use k-map unless the desié" @
Hardware Design Issues’ |13]

112] Insights on EmbEdd.Ed_S_y-s‘:;_'_
. 3 m et
Scanned with CamScanner

-0

-0 -
-8
o -
oo
Q

Log(n)xn
Decoder

. nlop Opp-1) 0,00 CE"SW Sum
VN \ 11 45, =M, Y, = PR =fay
PR RS CEESRC A M N < oh
X .Y ' X Y
i
n-bit nbitm |je2
: L =
Comparator function | S,
1 T - ALU '
l l el T <
- in S{Ingm] .

Less Equal Greater

Figure 2.4: ¥ew commonly used {TF1eve] combinational components
i. Multiplexer allows only one of ‘if.{ data inputs to pass throug!
the output. For mx1 multiplexer, there are m data inputs and o
data output with logom select lines. The value of select 3
determines which input data to pass through to the output. IH;
be used for parallel to serial conversion.

z::::::"‘::; EJ:aCFIv one of the output lines to be high atagh

iy de‘:od;u ar tnput. For n input lines, there will be 2" outpt
o bcan be used for coding the addressing lines " t
) Itcan be used to convert binary to a suitable form-

m.:lder is used to add two n-bit in
with a carry of 1 bit,

il
puts producing an n-bit sum %

Comparator : o _
llows to compare two n-bit binary inputé, generalﬂ

the corres; i
pond .
equal to, or gre::i:t":p”t based on whether one input is 1€ theh
an another in 4
put.

-V. Arithmetic-logic un '

functi
ts. The select line is used to select VW '

114] insights on Embeddeqd Syst
: oedd em

" function is to be carried out. If there are 2™ functions that can be
done by ALU then there must be at least m select lines.
d to shift the bits of the

vi. Shifter is another example which is use
divider or multiplier. For

input right or left. It can be used as a
example shifting 0110 (6) to the right would give 0011 (3).

Slew) gonsitive Ehu\:"?.!-'?ngl
he v B

2.2 Sequential Logic :i \t; op? edgé gonsi
A sequential circuit is 3 digital circuit whose outputs are a function of
not_only the present inputs but also the past inputs. The output: of a
sequential logic depends on its present internal state and the present
inputs. Hence, a sequential logic circuit has some kind of memory. Logic
gates and flip-flops are the basic building blocks of sequential logic circuits.
Flip-flop is an example of sequential logic circuit. A flip-flop stores a
single pit. The different types of flip flops are listed below. '
D flip-flop: It has two inputs D and clock, when clock is high, value of
D is stored in flip flop and same will be the value of the output Q.

When clock is low, previously stored bit is maintained ignoring the

- value of input D. { opsur®s eﬁf&fﬂ‘j% d";"u"‘f);gf&“‘i{' ok tio Flogy "
SR flip-flop: It has three i‘npu;t_s“S (set), R (reset), and clock. When

" clock is low, the previously stored bit is maintained ignoring the
values of input at S and R. When clock is high, the output varies with
inputs S and R. If S is high, the'output Q will be high and high bit (1)
will be stored by the flip-flop. If R is high, then low bit (0) will be
stored, The output wili not change if both the inputs aré low but the

undefined condition will occur if both the inputs are high.

. JK flip-flop: Its operation is similar to that of SR flip-flop but when
both the inputs J and K is high, the stored bit toggles either from high

to low or low to high. il Tk ke daieten
; ip- . ; n 3 = intain 3le =0,
’ a'e_%ﬁ‘% W%ﬁin%ﬂftﬁ:nm'm o ip-Fiop
2.2.1 RT Level Sequential Components -,
{ ﬂ;ﬂ:ﬁ&%; ‘Whﬂiﬁ}i‘m‘

. Register g

A register stores n bits from its n-bit data input which also appears at

its output. A register usually has at least two control inputs, clock and

load. For a rising edge triggered register, the inputs are only stored

when load is high and clock is rising from 0 to 1. Another control
Ohip Hp T & - mamory ol . s

U For slgring n-loils, LR use o ‘nt.}m‘i ﬂﬁuh‘;m‘r\"d‘ 15 b‘“‘lﬁ'_'ﬂ'_

WA Hardware Design Issues |15]

Scanned with CamScanner

“input clear may be used to resets all bits to 0 regarg)q
es
of input. Since all n bits of the registers can be Storeq Sg the
refer this type of register asa parallel load register. Dara";‘h

e Shift Register

A shift register stores n bits from its one bit data input \,
two control inputs clock and shift. When clock s rising g Wi

the nthbltofmput:sstored mthe(n—l) bit, and (n- 1}”* ifgls.
bit .

" is stored in the [n-z) bit and so on down to the secq nfﬂn

stored in the_fi rst bit. The first bit is shifted out appeI1db
ar|

output bit. It has one bit output and the input must pe gy,
the register serially. .. 5hft

. Counter

A counter isa reg|ster that adds binary 1 to its stored bmaw
Valye,

general, a counter has a clear and count as a contro| input .
uts. g

resets all stored bits to 0 and a count input enables | Increme
N
each clock edge. A common counter feature is both up andu:

counting which required an additional control input to indicat W2,
€

th

which cause a transition from one state to another are listed
‘next to each arc.

e Assign each state a unique’ binary value, and create a truth table
for the combinational Iog:c The external inputs and the bits
coming from the state registers are fed to the combinational
logic as inputs. Whereas, the external output values along with
the state bits to be loaded into the state register acts as the
output of the combinétional logic.

e The output values change only with the current state, so we list
the external output values only for each possible state,
regardless of the change in external input values.

e Now, we can have a truth table, with the help of which we can
proceed with combinational design by generating minimized
output equations using k-map. And finally, drawing the
combinational logic circuit.

Sequential Logic Design Example

count direction. § " el

| Example 1:

A small triangle in the bIock re
presents the ¢
sequentiai logic. o X lock input for n

1

Design a soda machine controller, given that a-soda costs 75 cents
and your 'machine accepts quarters only. Draw a black-box view,
come up with a state diagram and state table, minimize the logic,
and then draw the final circuit.

load :
=2 n-bit _Shﬂ. count
— n-bit Shift — -bit
- —!" . Register Repist. —» _>
clear n glater Op ey Counter

clear’

Figure 2.5: RT-level sequential components -

222 Sequential Logjc Design

For a sequenti
fal |
be used. However, ogic design, either Moore or Mealy madel needs?

th
designing, e design steps remain the same for any model usedf“

1.

General steps for Sequenhal Lo
. Translate the
a finite state

glc DeSIgn

problem descri i
ti calle

machine (Fsw). ption to a state diagram, als0

In FSM, each circle

repr it
: Values are listed with Presents a state where desired Uutp

Solution:

The coin must b entered three times to get a soda out of the
machine. Throughout the design,' Cin represents the coin input and
sout indicates the soda output whereas Q1, QO represent current
state and 11, 10 represent next state. ' :

A. Black Box View

& sout
Soda Machine —*
Controller Cin

Ilﬁl I each state Whereasr the input cond®?
nsights on Embedded Syst I
em

Hardware Design Issues 117]

Scanned with CamScanner

_“

B. State Table

Inputs Outputs

[ofolilo],
lola]x]2] .
Flalelele]
Gllelel]

Figu) ; AP e
g_ r¢ 2.6: Soda machine controller design

2.3 Custo s
= r——
Py pmsc"’gle Purpose Processor Design
o esslor consists of a controller and 5 datap;ath

L. Datapath ¥,
e Itstoresand mahibu!at'es a system’s data.

2. Controller :

it contains register units, functional units and connection units
'like wires & multiplexors.

The datapath can be configured to read data from particular
registers, feed that data through functional units configured to
carry out particular operations like add or shift, and store the
operation results back into particular registers. '

Examples of data include binary numbers representing external
conditions like temperature or speed, characters to be displayed

on a screen.

It sets the datapath control inputs (like register load and

multiplexor select sihgnals} of the register units, functional units,
and connection units to obtain the desired configuration at a
particular time. :

It monitors external control inputs as well as datapath control
outputs, known as status signals, coming from functional units,
and it sets external control outputs as well.

Figure 2.7: Internal view of controller a

E:stem'al External data
f: control inputs inputs
| -
Y ¥ ’__b*—‘
|— Controller Datapath
Next - State Datapath -
contral inputs |~ e
and ki Registers
Control - r
Datapath
Logic | control Outputs
Functional
_ State Units
Registers '
| | 11
External External data
nu_‘tputs

control outputs

nd datapath of single purpose processor

118] Insights on Embedded Syst . _/
| System T 2

Hardware Design Issues. |119]

Scanned with CamScanner

; s ming Single-rurpose P
2.3.1 Ste s__ﬂf,f’fﬁ‘ﬁ?'/"’g—ig, o i TOCessq
1 Draw @ black box diagram: Black box diagram is 3 s

external interfa ;
long with few control signals.

2. Write the functionality or program: The fun"'““”a"t? or
code which provides the solution to the defined pr, oblen, mg,%i

ces of a system. It generally incluges ; mnle.bﬂ

signals a

e Theinputsignals are assigned to a variable,

. Number of temporary variables.may be Useg
requirement. 2 bﬂSEﬂ !
o The final result is assigned to the output port.
" g, Design a finite state machine with data (FSmp):. The .
; tnm

converted into equivalent complex state diagram which i$ kngs.
finite state machine with data. In FSMD, templates 4, &
represent various constructs of program. The temDIate:q
assignment, branch statement and loop statement are disfusl

below. 4
i Assignment statement: For this statement, a'single state iy

with statement representing its action. Generally, a singlean
is used to connect to next state. The teniplate used|

statement S =A + B is shown as an example.

Figure 2.8: Template for assignment statément

.
th::cg, ;;?:e;;nt; It can be represented by using "
state, State ¢ an: ;’ and few other states in between ¢
States between (gt tate J are with no actions, left emt "
€an vary depengin ate and J state contain actions. Its "
€ On number of conditions defined "

with the arrow that connects the C state and states of each
branch. Last states of each branch are connected to the J state.

if(C1)
C1 Statements;

else if (C2)
C2 Statements;

else

Other statements;

Figure 2.9: Template for branch statement

Loop statement: Its template consists of Condition State C, Join

State. J, and other states representing statements of loop.

Condition is written alongside arrow connecting condition state
and state of first statement of loop. The last state of loop is
connected to the J state which is connected back to condition
state. Cnmplemenf condition is wused alongside arrow
connecting C state and next statement outside of loop. The
template for the loop statement is'shown in the figure below.

1.

lcond
C:
th&le{cond,'l cond
{ ‘ Loop Statements
Loop statements; E l

}

Next statement;

I Next statement

Figure 2.10: Template for loop statement

Build a datapath: The datapath is build based on functionality of the
system. Following steps are needed to be taken into considerations

while developing a datapath.

Problem. How,
- TOWever, for o
states representing ac;:Ch true condition, there can b~

120] Insights °n Embedded Syst, = /

1L AP J -
T TP, = = R

Hardware Design Issues |21]

Scanned with CamScanner

geglsters The number of registers to be used jq
e of variables used in the functmnmIt b,
igned to Inputs temporary variables and UUtp eglsters

nal units: Blocks representing arithmey
fined within the datapath,

.assi
i, Functio!
operations are de
iii. Connections: The connections among ports,
functional units are done based on operangs |, ej -
assignments and comparlson of functionality ¢q e, Au-. "
multiplexor 1. reqmred when the value in registe Ty
assigned from more than one source. The Sources
inpUt port, a functional unit, or another feglster

and |q

_iv. . Control inputs and outputs: Input control signals .
required by registers and multiplexor. Register logq P
used in- case of register while selection line Slgnal?
multiplexor. Control output is produced by logical Units y
datapath. Each control singles are given a unique identifie;

Develop a finite state machine (FSM): The states and transit

FSM are same as that of FSMD. However, the complex actioy;

conditions of FSMD are replaced by Boolean expressions usiy

control signals defined within datapath. For every registery

e load signal is asserted and corresponding muitiplexor selectionk
= pronend
: : ""p[actwated if there are two or more sources for a given register)’

2 corresponding functional block.
ey Tt c-) ondtp Shele.
'bni- htfark = ein ¢halg

Example 1:

Design & .
Bn a Slngle Durpuse procassor that Calculates the sﬁa

common divisor [GCD) i
of two n SMD, d2
“and FSM § in e desigi, umbers Include F

Solution:

Initially, the black box view dj
| the funct Ctionality yhi I
- templates, .

ad
h agram is drawn and then follo"*
ch is converted into FSMD using 2P

F.-___

L'perations (assignment statement, arithmetic statements), rs§ .
; the logical operations are replaced by the control -signals § Figure 2. 11: Black box view,
1.

42D . '
____ES_'Mmple ofa Sm le-Purpose Processor ___

}

—

A. Black Box View

o}

go_in x_in y_in

GCD

‘d_out

'

B.. Functionality Code

int xy;
while{1){
while[!go_inlj; .
x=x_in;
"y=y_in;
while(x ! =yH
if(x<y)

y=y-%

_else

functionality and FSMD diagram of GCD processor
Datapath for GCD processor: To construct the datapath, we need to
determine the number of registers required, functional blocks for
operanons mux and connection requirement, and control lines for '
register and mux.

Number of registers: Two inputs x_in and y_in asslgned to variables x
and y, and use a register d for generating output signal (d_ -out), and
no other temporary variables are used. Hence, three .registers x, Y
and d are required. '

Functional blocks: The arithmetic and relational operation involved
in the funcnonahty are x-y, y-x, Xl=y and x<y. Hence, two subtractors
and two comparing blocks are required.

—

19290 tecrin.

/*::_

Hardware Design Issues |23]

Scanned with CamScanner

ment and connections: INE Value in re,,
i : §
Jndeyl so it requires a multiplexor of 2Xlte; ”m
ster y. For connections, the output of re i n-]“ari
5

ts of subtracting blocks ang i tery
a

ting x_in.and x-y are connecteg t: ﬁn?h::
fed to register x. Similarly, y ; ..ae»%‘
ected to the register Y through mux. And, the gn h
put of register d. All COﬂNein:zp”‘

t the corresponding Operat m
. n |

"MUX require
sources, X_in
case for regi
are connected t0 inpu
Also, the line represen

© mux whose output is

conn
' register is connected to in

done so as 10 represen
functionality.

|

Control signals: Unique identifier for various contrg| ; :
- R

assigned. _ (Sﬂlée ';‘ff:-‘r-':'s-.'i(m
« Load signal of registers: x_ld for register x,-y_Id for ro, Thais 1007 —
and d_\d for register d. Elam%&, %ﬂ;r'
« Selection lines of multiplexor: x_sel for multiplexor aSsgﬁ:i‘NI (A AE R)

LY)
. with register x and y_sel§ for multiplexor associatém&‘iﬂ’%ﬁ“‘;‘iﬁ, Lo { -
A =\ e

register y.

S —

2. Finite state machine for GCD processor

All actions and conditions are replaced by equivalent Boolean
expressions as used in datapath. For example, action x
replaced by expressions x_sel =0 and x_Id = 1. x_sel = 0 will connect
the input line x_in through mux to register x and x_ld = 1 will load the
value of x_in into x. In case of d_out =x, only d_Id = 1is used as it has
only one source and no multiplexor is used. And condition x< y is
replaced by x_lt_y. The identifiers for control signals, however, used
in ESMD must match with the one that is defined in datépath.

X_in is

n Ada A
1" Aapleoh

3 m_!hla!g.:\\,m‘,&;; 5,

gl

. . . . '-SE":‘O; [‘eu:ptlsg_'.n = ’ .
o Signals from logical block: x_neq_y and x_It_y are used for Ei'ﬂux ‘;Po& —‘.\e-e $A o 0100 %
[Huplop rrmsEY
equal toy and x less than y respectively. we 54 i iy 8 lix_ne_y)
_ fordit” dude Lot 5: -
x_in . y_in Aox.aep ‘.?%)
_ Lok o0 &
- W g AUY Y 0 g
SIQH{L\\ Ve xsel o L - i’iéow o111 T
Do HWY q_.y.—.-s_é.l_ :_‘"F 2X1 .. ~ 2X1 mn;h‘{r
¥, (:J“.Q _)(___i'd_ e * -\F‘f’(:-ﬁ?q'“'*l ¥ ‘r“,’-j:\t oy Kt;:"-.s
Suveqision {0 | k oy -
J e 1 e T -1 ;\oim sade Loy
vop X47Y
o _ yeomaunho al d,ld;\‘g%’tiuul'% -
omigolgr: d? s ” : pﬂi \is: {jol ;u* &mu 9: d_ld=1 4
il To sr’etﬁ:;i‘.-,"_ . i :
prond AN xlty |- X<y i :]oin. Sade b D00 W
CIX, i 5l S e Hpinkindte wile ;
\ S digd |7~ """ memeaa ‘|-‘,w n v
5 .'(ai'k’}' C‘L d S e Jop, Figure 2.13: FSM of GCD processor.

| d_out

Fi . ;
gure 2.12: Datapath of GCD procer;snr

I

Hardware Design Issues I|25|
Scanned with CamScanner

Jer impleMENLATITAE 0der g

e Canﬂ'ﬂl
3. Building) ;
Use all the control signal representations from datap
.) . e ath
o Number of state register is dz_a;‘a_r;‘ed b_y number Of sty (R Bridae
' ¥ a) Cont
represent.FSM. For ex;mtplf, i L neJehqre 13 states the::"‘& o I ‘ e,
ki Ent 13 sta es. énce we W F‘:_I ‘rely_in=1 :
4 bits tD' R = : have to u?q —*[WaitFirstd = RecFirstdStart RecFirstAEnﬂ
state registers.- 9. , : - %| — data_lo_ld=1 i, .
Controller implementation model’ : rdy_in=0 rdy_in=0 rdy in=1
4 i rdy_in=1 ¥ |
go! WaitSecond4d’ RecSeconddWemnddEﬂ
x - Combinational - l_ data_hi_ld=1 —
_ : logic .
' Send8Start PTm— N
data_out_ld=1 rdy_out=0
rdy_out=1 = _J
| rdy_in ’ H ‘ rdy_out B
| clk s
B data_in{4) data_out \
£ == =
o i |
= & 5|5 =]
y: a ;-f, o = 5'
\ £ .'.'E'—'—"I'U . dataour st 2
| {b) Datapath L
i £ : L e 2.4 Optimizing Custom Single-Purpose Processors
b 2.3.3 RT Level Custom Single-Purpose Processor Design Optimization is the task of making.design metric values the best
tion can be done by simplifying the resulting design of any

Let us consider an example of a bridge which combines twot possible. Optimiza

inputs, arriving one at a time from the‘sender terminal into one 8-bitod system utilizing v
¢ - removed which does. not

arious techniques. Different states in the FSM can be
hing and -are redundant. Also, we can share a

to the receiving terminal. :
' : 3 component for same operati'ons in different states and hence minizing the
-‘5 M;we.w,ﬁ;ﬂ“,’,qmw.h“ i size of the system as well as its cost. Other various factors can be considered
& A-Liir ariiving = . | .) 5 T : .
2 ik iy ot for optimum design but some simple optimization that can be applied are
2 | - with 3 ral._in pulse, into.one &-bit) wol - : . .)
3 dtaild) | outsut o dote.out slongwitha _[dara, oute] discussed further.
e — ek < 4 : '
- Sy e i Optimizing the Original Program:
dy_in= id 2 8 i - . i gl
s Oridge _© 1% - rylinel ‘We should analyze different program attributes and try to develop
d:::"::g:;ﬂ‘[S ; ; “alternative algorithm ‘that are more efficient. We can analyze the
_lo=data_in ; ! E . e A ! X g iy
:) : algorithm in terms of time complexity and space complexity. Number -

rly_in=0

+ rdy_in=D

of computations can be a form of time complexity whereas the size

of variables required corresponds space complexity. -

Lets compare two different logics to calculate GCD:

Send8Sian
data_out=dyy hi
EBdataly
1y oyt

Inputs:, rdy_in: bit; data_in: bitl4);
Outpuns: rdy_out: bit; data_out:bitl8
Variables: data_la, data_hi: bitl);

while(x I'= y}{

Hardware Design Issues 127]

Scanned with CamScanner

ii.

if{x < y)
yEYR
else
x=xY:
}

To con'l
operation, xand Y

- (18, 8)-(10, 8), (2 8),

variables.
while(y = 0){

5 r=xl%w

CX=YS

.
}

and 8, it takes 9 iterations to

‘will take different values as (42, 8), 3

(2, 6), (2, 4), 2 2) And it ,

: Dnn51dering the example of GCD:

0
m%

8) (Jg
ES

To compute GCD of 42 and 8, it takes 3 iterations to compg,
operahon,xandywalrtake values as (42 8), (8, 2} (2,0). Ify=q
= 8, it will take 4 iterations, one more than previous. But it regy

three variables.

Optimizing the FSMD

-~

‘Each state in an FSMD is assigned with operations from the dar‘
program; this process is also termed as scheduling. The schedd

process can be improved

merged. -

by foliowing methods.

* Merge states: States with. indiependent ooperations ¢

* Eliminate state: States with. constants o‘n transitions ¢
eliminated since transition to be taken will be fixed as def

by constants. And some states without any operation @1l

‘be eliminated.

Se
bel:ra:a states: States which require complex operatmrﬁ
0
en into smalker states to reduce hardware size-

[e] =
' x=y)

E
) I{w :
Y E—_? 8: ‘x/=x-v
EI i} l -

_'Bu

E: Eliminated, M: Merged |

|1
T
 —

go_in
2
go_in

2

1
3 [——@0— go_in
. x=x_in

y=y_in

e ¥ T ek

FY Y

B y=y-x

t?

Flgure 2.14: Optiniized FSMD from original FSMD

Consider the operation p = a*b*c*d, if we use single_s’éate for this
particular operation then three muitipliers are required which makes
system expensive and bulky. So the operation can be broken down as
x=a*b, y = c*d and p = x*y with each operations having its own state.
Thué, only one multiplier would be required in the system. '

. Optimizing Datapath .

During the datapath design, the task of selecting a RT components
for particular operation is termed as allocation. Whereas the task of
mappinig operations from the FSMD to allocated components is
termed as binding. The optimization in datapath design can be done
by followmg ways. '

. Sharlng of functional units: Smgle functional unit can be shared
if same operations occur in different states. For exampie, in

' Hardware Design Issues [29]

Scanned with CamScanner

d

jon of GLU LIElE Wit LW Wmfacto

’ t
zsgf::;m rather a single sul:tractor can be Use l:s:_d 'Wh
of the multiplexar: Henc® 7 %3 518 MARPIng i h"‘*k SOLUTION TO IMPORTANT QUESTIONS
‘o Use of multi-functional units: A variety of one Chay N : : _
. performed by ALU hence it can be shareg for g tProblem 1:
rations occuring in different st;tes _ diy Design a single purpose processor that calculates x to the power n
» ') {x). Include FSMD, datapath and FSM in the design. [2074 Bhadra]
iv. Optlmlzmg the FSM . : =y . _
_Optimization in FSM can be done by: _ §o ution:
o State encoding: It is the task of assigning a unique bit |
each sate in an FSM. The size of the register as Well 5 - A. Black Box yiew
of the combinational logic varies for different ¢y, dﬂm
example, if we have four states then it ‘can be enmd;;gs 3 go'_m x_in “n_in
01, 10,11 but it can also be encoded as 11, 1p, 01, og, y e
" number of state is large the number of ways of State & ffy :
will be very large, hence CAD tools are usad to dete fmmg[ReC 'p‘__oht
, most efficient encodings. . e l .
[e State minimization: It is the task fo merging equivalent ' P
©into a single state. Two states are equivalent if those two s B. ‘Funct.mnalny Clode
_ . generate the same outputs and transition to the same y int x,n,p;
B _ state, for any given input combinations. Merging eqiy Wh”em,{”mm{igo i
states yield exactly the same output behaviour. g ‘ e !
- |) n=n_in;
m=1;
while(n>0){
h=m‘m
n=n-1;
Yo
p_out=m,;
} :
“Figure: The b!ack box view, l‘unctmnalit}' and FSMD for processor that
calculates x".
130 s —_ o e b ‘ _ " Hardware Design Issues |31]

Scanned with CamScanner

Dl

" FSM of the processor that calculates x.

- the processor that calculates yn

n_in

Datapath fo

x_in

Figure: Datapath of the pru'cessur\thgt calculates x to the e e

o011

0100 - n_sel=q

nld=1

roblem 2:

Design a single purpose processor that generates Fibonacci series
up to n places. Start with a function that computes desired resuit,
translate the function into a state diagram, sketch a probable

datapath, and draw FSM diagram.

[2075 Baishakh]

olution:

A. Black Box View

¢ e

go_in n_in

FIBONACCI

f_out

. " B., Functionality Code

int ft, st, nt, count, n; .

while(1){
while(!go_in);
. nEn_ing
ft=0;
st=1;
count = 1;

while(count <= n){

f_out = ft;

nt=ft+st;

ft =st;
st=nt;
count++;

Figure: Fibonacci

-

series generator — the black

and FSMD

=N

box view, functionality

Scanned with CamScanner

" p—

Fibop,

"_in ‘-‘q“'{

Iroblem 3:

Design a dual-purpose processor that calculates the median and
variance of 5 numbers entered by the user by showing the
algorithm, FSMD, FSM, datapath and controller design.

[2073 Magh] -

rocessor that generates

D. ’ Datapath ofthe p

2 : A. Black Box

L4411 '
{I art ain bin cn d_in ein |’ \start
' 1| MEDIAN AND VARIANCE OF FIVE NUMBERS n[0] =a_in
; ’ 4 - % Sl med_out var_out 2 nf1]=b_in,nf2] =c_in
; Figure: Datapath for Fibonacci series generator 7 1 ‘ nl3]=d_in, nf4] = e_in
_E. FSM controller for Fibonacci series generator .. B. Functionality Code _
e 1 Y int max, n[5], i, MD; 3
. wo [] float o, 5§ VR
i ' : ot ; 4
i while(1){
while{lstart);
5
’ 0010 2 nlo] = a_in;
% . 1 n[1] = b_in; n[2] = c_in; &
o011 3 i " p(3) =d_in; n[4) =ein;
0100 & S $=0,i=0; = = 7
' e while(i < S){ ’
0101 &5 :
. s=5+ _nli]; d 8
0110 & i=i+1;
: I(c_le_n)) ?
7 -) + g
mn = s/5; , co. 10
5=0,i=0; ' ;
while(i < S){ . ; 1
t=n[i]-mn;’
5=5+t*t 12
i=i+1;
1 : : 13-
VR =5/4, MD = n[2];-
m-_out = MD, v_out = VR;
| } 14
var_out=VR ;

Figure: FSMD of processor that
calculates the median and variance

Hardware Design Issues |35|_

Scanned with CamScanner

D. Datapath

sroblem 4: -
Design a single purpose processor that checks whether an integer IS

prime number or not. Include FSMD, datapath, and FSM in the

i design. [20786, Bha_dra] ,
Solution: '
L -
| k:"‘ A. Black Box C FSMD
,E;:ﬂ start : n_in 1c
s
2
LASe-
mn_td. p_-om) 5
md_Id.)
w_ld - ;
’ B. Functionality Code 2
med, out var_out i
intn, i, c
Figure; Datapath to calculate the median and variance of five Numpy, while(1)(5
3 = 1)1
E. FSM ’ while(Istart);
i n=n_n;) 6C
c=0;
i=1; 7C
while(i < m{
if(n%i==0) 8
c=c+l;
71
=i+l
} , 9
p=(c==1);
p_out=p; . 6l
) L
10
11
1

Figure: FSMD to check whether a
number is prime or not

* Hardware Design Issues |37]

Scanned with CamScanner

uv. Udlapaiil = ” L M

T . !
. , oblem 5: ‘
S . b " Design a single purpose processor that calculates factorial of an
" eine . integer. Include FSMD, datapath, and FSM in the design.
e [: ' _[2073 Magh]
S —
plution: -
kol : ' ~ . A Black Box View . FSMD
’ :) | ga_in n_in
_ Factorial
: ~ © . fout

!

|
|
|
' 78, Functionality Code : a: m .
. intn,f; ; " :

| 7l
L while(a) _ e
" S while(gon; ' \ns0)
13 6 f=1; -] i ’
' while(n>0){- & [_r=r*n]
; 10 '
f=f*n;
7 £
| : e EZED
}
e sl |
. . ¥ f_out=";
Figure: Datapath and FSM to check whether a number is prinens o)
LE’.‘ .
l\’JS: ! . : - ' Figure: The black box view, functionality and FSMD for processor that
[. M e calculates factorial of an integer.
=it ' o Hardware Design Issues |39]

Scanned with CamScanner

for the processor tnat caiculate)
. Datapath * factory
L 3 n_in) an i’% R— . a
; ' | | \ 1rob|em 6:

‘ i i e
e i pevelop algorithm, draw the state diagram, and des!gn . ::e
I datapath of a custom single purpose processor that determines

i f its controller
st of four integers. Propose the block diagram o _
) ' [2073 Bhadra]

also. ;
5olution:
'c_. FSMD
A. Black Box i

. _ :) ‘ -
IR S W =]

start a_in b_in c_in d_in start

n[0] =a_in ’

nfil=b_in

MAX OF FOUR NUMBERS

. . e the f 1) out
; actm‘]al Oraﬂi i - |“. : o

]-:

n[_2] =c_in

FSM of the processor that calculates factorial of an inte

B. Functionality Code
int ma.«x, n[4], i;*
while(1){
- while(Istart);
n[0] =a_in;)
nl1]=b_in; B
* nl2]=c_in;
" n[3]=d_in;
max = n[0];
, i=1;
while(i < 4)(

* if(nli] > max) :
max = n[i]
i=i+1 ;
¥

m_out = max;

Figure: The black box view,

functi itv .
anen o+ caleulates nctionality and FSMD for processor that

maximum of four numbers,
3o +

=

Scanned with CamScanner

;. Datapath of the processor that calculates Maximyp,
p. Da :

o -
Cdin i bin fhu"’% o __________———-—=———'—‘
8 . oy ™y % 3 . . f
. i . L) um of d]gits 0
' ’ - : : < 7: termine _the 3 ;

_____ r ~-==3bn3 | nar n1 | -sbng roblem ien a single purpose processor to de function computing the
i s = - O teger. Start the design ‘from the) (2076 Baishakh]
i etk Eotubind rnbrey sl an in . ntroller.

"[dﬁai':,'s_é!'_ vl gl Ls W :“ 0 desired result, FSMD, datapath and co .

:;E‘-;---- -+ 4x1 o i . *

]] 2 ma] | ofution:
Nox ke 5 1 . .
e A. Black Box _ .
> ' E

ilt4 } n>max

el

m_

. =

SUM OF DIGITS

s_out

Figure: -Da.ltap-aih to calculate maximum of foyy ““m&r;

E. FSM of the processor that calculates maximum of four NUmber,

R k|

> r o B. Functionality Cade
start ' %

intn,s, r;

while(1){

while{!stan);

n=n_in; _ n>0
s =_(;5 &
;vhlle[nm){
r=n%10; 7:
s ='5| +r; .
n=n/10; ad 8:
} 2 ;
. ’ 6l: | .
) s_out=s; i

1): | ;

' Figure: The black box view, Tunctionality and FS
' calculates sum of digits of an integ,

MD for processor that
er value,

Scanned with CamScanner

. akdpriani s =5 & o W SRS IR e
valie. C T T Oty —
' i ’ of :

" . n_in-' y i \h .
.actice Design Questions .~ -
" pesign a single purpose processor for the following problems. Start

the design from the function computing the desired result, FSMFJ,

datapath and controller
to determine the largest among thre

to calculate the multiplication table of
example: if n =4 and m = 15 then we nee
multiplication table of 4 from 1to 15 gonsgcutive comp
the sequence: 1, 5, 10, 17, 26 upto n terms

r an integer number'is perfect or not. (A
f all the factors

e numbers

integer n upto m. For
d to generate the
utations.

L] to generate

¢« to check whethe

Figure: Datapath of the processor to calculate sum of digits o¢ an ber is said to be perfect, if the sum 0
number is said to be perfect, i

E. FSMofthe processor that cal : integ
C - h 5 i
: uiatessum ,Ofd'g“s of an 'meﬂffnh excluding the number itself equals to the original number.)
i . 0000 1: - 2 ; " Design a dual purpose processor for the following problems. Start the
- 1 - _ design from the function computing the de_sired result, FSMD,
" sta - .
L0001 2 - : _datapath and controller. Use optimization wherever applicable. 5

00 2 -.EE. ' e tocalculate the area and perimeter of an rectangle

e todetermine the smallest and highest of three numbers

i oy | e, “ : ‘s todetermine the maximum and minimum of five integers
N o:ldxd _ . e. to calculate the sum of odd digits of an integer. And also check
" om0 4| Ssel=0 ' e whether the calculated sum is even or odd.
- : e to calculate the factorial of an integer and also check whether
i{n_gt_0) ' ' the number is prime or not. Yk

n

i

LR
0110 g m
o1’ s sel=1 |7
s ld=1 :
1000 . g ’
' Al

‘Hardware De3ign Issues |45]

it ik Sl

Scanned with CamScanner

Chapic 3 -
~ SOFTWARE DESIGN Issyg
e . BasicArchitecture ES
. Operation

e Programmer’s View

® Devefﬁpment Environmeht

° Application-Specific Instruction Set Processors
o Selecting a Microprocessor ’

e General-Purpose Processor Design

31 BasicArchitecture . i
A general-purpose prm:essof isa /
- programmable digita
. t
consists of a datapath and a controller which are tighgt I:"If\fs m
inkeq

n'1e_mory. Figure 3.1 shows the various components in the archi
general-purpose processor. architectuyg
Processor i
Control Unit. _ : m
Controller ' "Controlj Status - —=:_|
' , » ~ALU
< > g

Registers

r'\l rlZO

manipulates

~ pata path contains registe

“from memory for

. branch instruction, status signals from

instruction.

cuitry for transforming data and for
n arithmetic-logic unit which
data through various O s addition,

| OR, rotating, shifting, etc. ALU also
t various conditions such as carry,
mation is stored in status

patapath
patapath consists of
temporarv_data stora

the cir

ge. It contains 2
' perations such a

subtraction, logical AND, logica
generates status signals to represen
sero, sign, parity and so on. such infor

register. . _
re temporary data and different

ons. The temporary data may be the data
;, or the data that needs t0 be moved
ry, or the data from ALU that
ded storaée. For data transfer
) ent of data_from

rs to sto

status generated by operati
ALU to process,
ne memory to another memo
essing by ALU or nee
ternal bus is used. But movem

from O
needs further proc
within datapath, in
and to memory is done by external bus.

Control Unit £
The-control unit consists of circuitry to general control signals to

carry out various-operatEOns. [t consists of controiler, program -,
counter {PC), and instruction register (IR).

logic. |t sequences
the control signals to read
er, and control the flow of data
d ‘memory. Controller also
r non-branch

Controlter consi
through. the states and generates

instructions into the instruction regist
between ALU, registers .of datapath an
determines the next value of program _counter. Fo
instruction; the value of program counter is incremented. But for
datapath and content of

register are evaluated for next address of program

counter.) ;

Program counter is used to hold the address of the next program
instruction to be fetched, while an instruction register is used to hold
the fetched instruction. The bit width of program counter indicates

_the address size of 'merﬁon; which in turn can be-used to determine
the number of directly accessible memory locations. For example, a

16-bit PC represents address size of 16 bits and 2'° = 65536

_ addressable memory locations.

_ _Software Design Issues 147]

Scanned with CamScanner

3.

storage.

- Melnuly
Memory _is 'used to storé information: for meg;
Information can be data or program. Program influ
of instructions that is used to carry out desireq i’unch
information used by the‘program for various F’Ufpog

:‘a“nn ish
elon- Da‘i:
o S,
There are two memory architectures based on l
M3

; L
SN Harvard Architecture Princeto |
: Sk N Archi
1. (Distinct data and program memory|Data ‘anq . hitee,
’ , Pro
space : _ Memory spae Bram
2.

fmpr_oved- performance: Data and|Data am
instructions can be fetched|fetched simult 1ons ¢y
simultaneously ; aneously

It I"EqUirES more connecti g wire e
ectin ires Itr i : 3
quires feSS Connectj
ne ingyi

4. |Block Diagram Block Diagram
Processor. Proces
: ocessor-
11 . y . y _"“
el y y
Program " Da
ta
" Memory ! Ll
5 M .
; e?\ory - -(Program and Data)
e e G
3.2 Operation

Instruction Execution

Instructions '
For e'ath_irast?:itit:: :: ts of code that carry out particular s
W il i m;s' e cgntroller sequences through sév?rallsw.ge.
Stages or sub-ggerari 'St of one or more clock cycles. The ¥
. OPerations can pe explained as: - |
f-‘etch instruction: »
into instruction r
“Mmemory where i
Decode instrﬁctli
represen

; _ "
Th.e next instruction to be executed "””;!
sfrgISt?r from: memory. The address ° i
Uction resides is given by program coun
on: : !

Instruction in the incs stel
tvarious gparati. Ction in the instruction re8%"°

" In pipeline,

o ——

register or memory as operands. In this stage, the operation to. -

be done by the instruction is determined.
n, operand can be a register

iii. Fetch operand: For a given operatio
the required data

" or memory. In operations including registers,
aded into registers as specified by the instruc

handles the arithmetic and logical
structions. The loaded registers are

are lo tion.

iv. . Execute operation: The ALU
operations defined by the in
fad to the inputs of ALU to carry out the operation.

ectination to store results may be either
tion, the final

fined by the

v. Store results: The d
register or memory. After the execution of opera

data is loaded into register or memory as de
instruction. ;

Pipelining - s o
Pipelining is implemented to increase the throughput of the system.

the given task is divided into various stages and multiple

stages which are independent of each other are executed

[taneously. For efficient instruction pipeline, different stages

simu
each instruction must require

must be of almost same length ‘and
same number of cycles to complete its execution.

Branching instructions can be an cbstacle for efficient pipeline as
next instruction to be executed will only be known after execution
stage of branch.inst'ruction. This problem, however, can be addressed
using various techniques. One simple method is to stall the pipeline

when there is an occurrence of branching instruction. The pre-fetch

of. next instructions is not done in this method rather waited for
execute stage to complete first. Another popular method is to use

.branch prediction. In this fnet_hod, the branch is guessed and the next

instruction is fetched correspondingly. If the guess is correct, then it
results in efficient pipelihe_ But, however, if the prediction is not
correct then all pre-fetched <nstructions in the pipeline must be
ignored. The following diagram shows an example of an instructi&n
pipeline having five stages. ==

er . .'-1;'_ py iy *3
“121i00s based on op-cade and M/

. - Software Design Issues [49]

Scanned with CamScanner

In embeded systo

.FetcHInstruction. m 2[3]4.]

Decode” -ﬂﬂﬂn

Fetch Oper_ands n
Execute
ENENRY

store Result

Figlire 3.2: Eight instructions in execution uﬁ';;lsrruc'ﬁ\
on i]leﬁ*

In Figure 3.2, there are 8 instructions in the ﬁiper

instruction divided into five stages and each requirjp ne wiy
complete. In absence of pipeline, the total time ’e%iri:q%
eight instructions would be 8x5 = 40 clock cycles, ass::

stage.” to compiete in one cycle. However With 4

. . 2 4 2 I i

implementation, the total completion time requireq | lpl ;
. ed is gy,

cycles. In this way, pipeline helps to improve the perform
system.] ' Mancey

Superscalar and Very Lon Instiuction
Architectures P “c?loﬂl Y m-

Multiple ALU architectufe is implémented in supey .

architectures to improve the performance of the §ystem.f
jsystems can execute two or more scalar operations in paraleli
mcreas.e the requirement of ALU in the processor. It may
extensive hardware to .detelct_m'ultiple independent instructin

* can be i
executed simultaneously. Instructions in such arhie

systery ; .
" t‘ams are ordered statically (at compile time) or dyné
(during runtime). _) :

~ Very long i : o | A
Iy long instruction word (VLIW) architecture is a tyPe off

superscal ' .
instrucﬁo:,; . archftm”re- It. - contains ~multiple inde
In a single word. Several operations are enco®

single machine i . :
e instructi : . ; ¢
Instructions, ction. The compiler detects and sched

Progr. “F“m',er’s View

PN

processor they are working on.

- specifies the locatio

- _ J——
o
aaanns
- Ghonhn

]y .
J

[nstruction Set
The instruction set, is a list of instruct
configurations for operations that ¢

processor. Assembly language programmer mu :
ilable instruction set. Since embedded system design may require
be written, programmer of
t available for the

ions which represent the bit
an be carried out by the
st be aware of the

ava
some portion of assembly code to

embedded system must know the instruction se

Every instruction, in general, consists of op-code and operand field. .
Op-code. field specifies the operatibn to be done. An operand field
n of actual data that takes part in an operation.
The number of operands per instructions varies among processors

Addressing modes are used to represent data

and its instruction type.
g mechanism. The simple instruction format

location and its accessin
is shown in the figure below.

[opcode | Operandl [operand2 |

Figure 3.3: Simple two address instruction format

.Commonlv used addressing modes are explained in the following

paragraph. .

s Immediate Addfgs;ing Mode: The operand field contains the
actual data. '

Register Direct Addressing Mode: The operand field contains
the address of the register. And the register contains the actual
data._ '

Register Indirect Addressing Mode: The operand field contains
the address of a register, which in turn contains the effective
address of the actual data in memory.)
Direct f\ddressihg Mode: The operand field contains the
effective _address of operand that is used in operation. The
actual data is available in the memory.

Indirect Addressing Mode: The operénd field contains the
address of a memory location, which in turn contains the
address of a memory location where actual data is available.

Software Design Issues |51]

" Scanned with CamScanner

implicit or Implied Addressing Mode: The
Pery

[]
i tMls fT:Ode:' iy fi‘gister to be ygey. i:d iy
defined implicitly. In general, accum et |
: ’ Hiatoy s Useda pef’ﬁ accumulator-and register B is not required for structured language
: nf\ programmer. However, various special function registers used for
tion, and interrupts must be

register.

; Di'splacemen_t Addressing. Mode: The Operan d.) configuring timers, serial communica
is

known to every'programmer.

a
particular register to obtain the effective addreg faud%
index addressing, index registers are s OF the g
- sed. Wi 0 Input Output Facility
i ; ila; . p s o
addressing, value of operand is added to the curree "y Every processor facilitates programmer with input output pins to
.determa'ne e detual address : : e ntadd’ﬂ co"rlnmunicate with external devices. Programmer working with
The operations of few addressihg modes can be y; ‘ processor's must be alert about the number of input output pins
. : iSual: .) :
following figure. . : Lo s”al’fﬂd, svailable and their functions. In parallel 1/O, port can be read or
" " Ope written to using specific function register. Also, communications can
~ Addressing Mode Operand Field Register File . ; : i Y TE——
' ' M!mo.;, be done through system bus in which address and data p
Immediate | : Data ' ; ' activated by certain instructions.
' . 5. Interrupts : . -
ArghterDimct Register Address Interrupt is a facility provided to the user in which the processor
- serves the device which requires urgent attention. It causes

processor to suspend execution of the current program and starts

Register Indirect] RegisterAddressj—le\,{emow Addréss
. executing interrupt service routine that does the function required by
the device which interrupts the processor. The programmer should

Direct - i MemﬂryAddress 4
Indirect g ' M be aware of the types of interrupts supported by the processor and :
ma r g . - -
; ol _ %‘m‘“ * must write interrupt service routine when required.
_ . . e & _
- Ty e BT ;

Opemﬁnﬁ System

o Figure 3.4: Addr'essing modes _ ‘An operating system is a ‘laye'r of software that provides low-level
- 'Program and Data Memory Space o - services to the application layer. Few services involve loading and
executing of programs, sharing and allocating system resources, and

synchronization mechanism. Another important service is process
scheduling in which the high priority process is executed first. Other
services include handling hardware interrupts, and provide device

Th y i
siz: ::Oframmer in embedded system design must be aware
whthbi alt;b[e for program and-for data. Programs must be it
tilerdcont e” defined memory space [imits. For *exampk
: rollers, the on-chip memory for program and G :
fixed. So, one should b F.Prog drivers.
exceed th € able to write the code efficiently s0 %" . W : ;
edt e memory fimit. \ _ High level applications invoke operating system using system call.
: 2 When'a program requires service from operating system, it génerates
Programmer of sl) P . E ' a predefined software interrupt that is served by the operating .
the number i m edded system design must be infarmedab’ system. Values required to the services are typically passed as the
egi y . ; A _
— exaﬁ-i-, ::ers av-allgbl_e for general purpose and $ | .parametf_-rs in the program. CPU registers are involved for
dopat using SNPIE, | icat, i bcqntr_ﬂnera information exchangg among application programs and operating
i | rmation

3. Available Registers -

system. -

* Software Design Isstes 53]

Scanned with CamScanner

3.4 Development Environment ¥

Prpc_essors along with different development tools are uséd f
development of software or an embedded system. Processor that is 2
write and debug the program is commonly referred as ;'de|,,e|:s ’
- processor”. Desktop computer can be taken as an example of de.-v..rehaplarli
_proce.ssor. Such processors may not be a part of. embedded smm
implementations. But the processor in which our program is load.::
referred as “target processor”. AVR, 8051, PIC microcontrollers or 8y
8086 microprocessqr can be few examples of target proéessor. S,
processors are always a part of system implementations. Various tooh:
the software development as well as embedded systems development,
described in the following paragraphs. :

3.4.1 Tools for Implementation and Verification Phase

1. Tools for Implementation Phase _
During the implementation phase, we need tools to convert hun
.developed code into machine readable code. ! ;

~

i. Assembler g
Assembler converts assembly instructions to binary machi
instructions. It replaces op-code'_ande operand mnemonics|
binary equivalent. It also translates symbolic labels into ‘acti
addresses. It generates an equivalent binary code for a sirg

machine instruction, so it follows fdr]e to one mapping principk
- Fes T e N ey

ii. Compiler o - = big
Compiler converts high level programs to machine progran
_ Each high-level constructs may be translated to several machi.
instructions. Hence, it may not follow one to one mappit
principle. Cross compilers are those ;'ompil_ers which run ond
processor but generate the code for a processor with differe

architecture.
iii. Linker _
Linker combines object files into a single executable file ‘
another obj._ett file. It allows creation of.a program.in separé
' npiled files. It combines machine instruct®
nstruct om standard library. .

Tools for Verification Phase
During verification phase, we need tools or devices to test whether
the code generated for target processor works as per the required

functionality.

., -

Debugger
Debuggers are programs that are used to test and debug the

“targeted program. These are programs that run on development

processor but execute code designed for target processors. It
simulates the function of. the target processors and allows
evaluation and’ correction of programs in development
processor. These debuggers are also known as instruction set
simulators (ISS) .or virtual machines (VM). Design cycle for
ﬂebuggers is fast as compared to other tools, since the program
is coded and tested in development processor. But, these tools
can, however, lead to inaccuracy as it does not interact with the

‘actual system.

Emulator ;
Emulator can be a hardware or software that enables one
system to behave like another system. It consists ‘of debugger
coupled with a board connected ‘to development processor. The
board consists of target processor or device similar to target
processor and support ‘circuitry. It supports debugging of
program while it executes on target processor. It also enables
one to control and monitor the program’s execution -in actual
embedded system circuit. Since the code must be downloaded
into emulator hardware in each test, the design cycle is little
longer compared to debugger. But it leads to accurate testing as’
it interacts with the rest of the system components as well.

Device programmer

Device programmers are the devices with the help of which
binary machine programs are loaded into target processor’s
memory. Using this tool, the program can be tested in its
realistic form which results in high accuracy as program runs on
actual system. The design cycle, however, is longest since the
target processor is removed from the system, programmed

using programmer and returned to the system. If the device

Software Design Issues |55]

S =

Scanned with CamScanner

ile i A und
ification Phase: The executable file is run
y especially boundary cases, are

ram. Profilers can be used-for

.. programmer can be made in-build within the system the g er the command
x ' T Oy b. Ver
W= o redices: i of a debugger. All possible inputs,

- | i) k the behavior of prog =
3.4.2 Design Flow : , _ used to chec he by e SN
 Ewer — T e - performance analysis of the program. Tim : ' p

VY oTes I ST CEIE dim L n be analyzed. Time complexity includes duration of‘execution 0
i i ificati s 1 : ca . re
implementation and verification phase. During implementation D, orogram whereas space complexity includes memory usage.

various implementation tools such as assembler, compiler are used .
verification tools such as debugger, programmer are used in verificy 2.

_phase. (7 n h
' ' processors are: different in almost all systems. The

Development Environment (IDE) tools for various processors are

' Embedded System Development Process B

case of embedded system design, the target and development
Integrated

1. Software Developmént Process

For a software devel_opm_ent, the developm_ent prgéessor. as wg available for implementation phase. Though the implementation
the target processor may be common. And the development y, phase for. embedded system is similar to that of software
are available in a single package which is referred as “Integn implementation phase, the verification phase differs drastically.
Development Environment (IDE)”. _ ' l ' -

i - i :] Implementation Phase *

*

[Source File J tsourc_e File J ! Source File]

Editing)
Compiling/Assembling
Linking

A 2 .
Verification Phase

s "

(Object File] [Object File J ' [DhjuctFiIe'}

. Debugger -

Debugger

Programmer

' Executable ““ Profiler -
. Program .
Implementation Phase Verification Phase ' Figure 3.-6: Embedded system development process

il I a. Implementation Phase: T s .

Figure 3.5: Software development process -~ assembling and linki .h ; he process of editing, compiling/
- G0, Jads . : , INking the program is same as that
Implementation Phase: Source code is written using an editor,? - development pi \ i ofsoftware
compiled/assembled using compiler/assem pment process. However, development processors use cross
assembled usi r/a compi :

’ iy SLEscomple - compilers or cross assembler. As .those compilers run on

i inedint?
Jfiice ; eS-.r.__IEO,mb'”e - development processor, for example PC, and generate the file for
o targg; processor, for example hex file for microcontrollers.

.

Scanned with CamScanner

EmUEME=T : ~ Mngy,
|| as with real tlme en Eh{:ql

verifi? s We ; : Virgy
ther €O uires control over time ang . Vim&r:
debugainB?” © ot and availability, _dEbuggers, "oy,
gased on I u can be used for verification, G ea:&
. T wes -
device P;ogn sevelopment processor using debuggers o curr"
simulati ;bv loading into emulator hardware. Also Pro .
be checke

: de directly into the target pfﬂtes;‘l
A ' I

n-Specific Instruction Set Processgry

acific _instruction set processors ‘are specific 4
particular application damaln- Th?v - be p.rpgramn::ed baggy
requirement of particular arena, Wh'ch inakest m_o re flexible, Alsp,
constraints such as performance, power,.cost, and size are efficient Er{
to develop a system. However, instr_uction set processor and its assog
coftware tools are expensive 1O develop. It can be Categoriy
microcontrollers, digital signal processors and less general appig,
specific instruction set processors. |

35 Applicatio
Application-sp

1. Microcontrollers ; .
Microcontrollers are specific to applications that perform at

amount of control oriented tasks. The following are few g
features of microcontrollers,

[} i o . >
It includes several peripheral devices such as timers, analg

digi ; . .
gital converters, seria communication devices, and soon.

It generally contains
Various peripherals
same ICresult in ¢q

Program and data memory on the s
along with memory incorporated withir

Mpact and low-power implementation. |

It Provides th
) e , : io
the IC, A Programmer direct access to number of P

(CEss to pi
Other deyices 10 Pins enable programmer to interface '
such as Sensor, actuators, .LCDs, and ¢

devices th
atm ;
Some spe; 3 be used in the system.

'Mproves ¢

different

alized ins
€ Performg
Digita] Signal p Nce of the system.

ors

IC| a - 3 ro(i_
S 0f daty 7, - "€ Specific to applications that pc'luf
a it

L

image captured by a camera, voice packet through a network router

audio clip played by an instrument. Few features, out of many

are

listed below.

It may contain numerous register files, memory blocks
multipliers and other arithmetic units,

It facilitates'with instructions that are applicable uniguely to

digital signal processing. Filtering and transforming vectors can
be two examples.

Frequently used arithmetic functions are implemented using
hardware. It results in faster execution of arithmetic functions
compared to software implementation.

Some special digital signal processors allow concurrent
execution of functions which boost the performance of the
system.

It incorporates many peripherals specific to signal processing. It
may include ADC, DAC, PWN, DMA controllers, timers, and
counters. '

" Advantages:

3.8

tructions may be available. Such y

-DSP provides flexibility: Digital signal processing operations can

be changed by changing the program in digital programmable
system.

DSPs are less susceptible: The digital circuits are less sensitive
to tolerances of component values.

DSP improves performance: It has a better control of accuracy
in digital systems compared to analog systems.

DSP su.ipports complex operation: Sophisticated signal
processing algorithms can be implemented by DSP method. '

Less-General ASIP

 These are developed to perform some very domain specific

processing while allowing some degree of programmability.
Processors designed for networking hardware can be taken as an

example of less-general ASIP,

50 :
U@ of large amount ofji// _
| -

Software Design Issues 159]

Scanned with CamScanner

or
: rocess
- MiCTO , t sel
gelecting added system; 2 designer mUST SElect the Micrg,
A he . S écts» rull. PS'i
ical aspects:. : MIPS is based on VAX 11/780 which could execute one million

Inany €™ 4 nontech”
instructions
Per second or could .execute 1757 Dhrystones per

based 0P feche . Selection of processor gt e done
. Teu:hl'ical aspe ?t‘hin imited power, size, and cost. basﬁ second. Hence, 1 MIPS = 1757 Dhrystones/sec. Also, performance of
: i ced Wi _ . other computers were m
equired P Sl SRTETN re measured based on VAX 11/780.
jcal aspects: gefore selecting Processor, o, ;

. nt, prior experti k < Prceia
pvironment, P pertise of P, 3.7 General-Purpose Processor Design

re Of ,
so on. | i . ! . .
Ifcensingarrangeme"tsand . General.purpose processor can be designed using the design
’ i .) technigue of single-purpose processor as general-purpose processor is a
Comparing Spee type of single-purpose processor which process instructions stored in

ssors can be measured and compared Using ‘farl' program memory. The design starts with the design or selection of
methods. - S -instruction set, followed by creating a FSMD, and then datapath along with
Clock speed of processor ; its connections with control unit and finally a controller or FSM is
Speed can be compared based on clock speeds of processors, hm.‘,dWEIDPEd' | . ; |

number of instructions per clock cycle may differ. So, it may nql FXAMPI‘.E:,DeSIgn. :11 ger?eral pur:pase prQCES.sor wlith fou,r' Wta st
an efficient method unless processors _to be Compared s instruction; two arithmetic operations and one jump instruction.

number of instructions per cycle.

speed of proce
i.

The following are the considerations made in the design.

° 16 bit instruction size, which has direct impact on memory and

ii. Instruction per second ' . ty ! ' register selections.
The speed i i : s _ B
peed can be evaluated U'5“"E number of instructions exes e Instruction Register (IR) and Program Counter (PC) of 16 bit,
per second. But the complexity of available instruction setsr’ 5 Memofy of 64K x 16 bit '

differ creating some hindrance in speed comparison. For exampl

: e Registerfi 16 x 16 bit
perform same operation, one processor may require 200 instrud . sifsir Blk eflGaiag]

while another may require 300 instructions. 1. . Instruction Set Selection A
lii. ~Dhrystone benchmark o Instruction First Byte|Second Byte|Operation .-
Itis a prog : ' i i = i -
perforp ogram that runs on different processors and evaluates! MOV Rn, direct|00C0 |Rn |Direct Rn = M(direct)
mance based on execyti L) | MOV direct, Rn|0001 |Rn |Direct M(direct) = Rei
benchmark ecution of cértain operations. DN : :
performs ng MOV @Rn, Rm [C010 [Rn |Rm M(Rn) =Rm

useful work rather checks the i

ari i
t,h:h-:::Ifh::r:m:ugimd"ng .Capatliif'ities' of the processor of 'ﬂhj! . . |MOVRn, #imm|0011 |Rn Immediatf: Rn= immeldiate
:PEratians thousands chlfi"- S"_lce processors can 'execute ; ADD .Rn, Rm 0200 |Rn |Rm |Rn =Rn +Rm
. € expressed jn terms of m:n " Ina second, speed of pmcessof | ~ * [SUBRn, Rm 0101 |Rn R.m Rn =Rn-Rm .
V. Millions of; "¥stones per seconds. i) 17 Rn, relative [0110 [Rn [Relative |PC=PC+ relative (if Rn is 0)
|

) nstryct ‘
Itis a geners| meamﬂmn Persecong (MIPS)
work ol re of o ; s
Processor ¢y, mputing performance and the 2™

Performan 0. M
ce of Processors ha\:PS can be yseful when ;om‘giﬂ.
1 rlg" | i
. e 01" : . .
[58 : Software Design Issues |61

0”“{'. s I Figure 3.7: A simple instruction set -
) :
parl ’ i

"€ similar architecture. Th

Scanned with CamScanner

» various m
ve inst;uct'ion set, the— h may b:.alns 't)
: Iy,
From the " be analyzed whe Hseful jy 0y,

ions €al Cyy, : \ =
and operation® i % reser | PC7 0
5D and d2(aP2T :

f memory location are available frop,

ddress © 5 3 deca i : = =pPC+1
Thea L ton register In mstsuc'tlorl MoV Rn, directan et JR=MIPC),PC
:fs::: i, the direct address is used hich g "a‘\'ailabrdh x |
[rect, Bl ; 4 .
as lower bytes: (&EO Bk
Register: In instruction MOV @Rn, Rm, the dg, T o| PP
: e f register. i v = MIdi
memory is given bY AN . . ' "@RF[M = >
(Address is also given by pC to load the instruction into " - : .

e Thevaluein register can be loaded from:, g 0001 OVZ M[dir] = R‘F[rn] R
Memory: In instruction MOV Rn, direct, register j; o N " : -

from memory whose address is given by lower eigh;, 0010 5 M[RF[rn]] = RF{rm]
(. : MOV
« Instruction register: In instructio_fl MOV Rn, #imm . ° - REG] i .
immediate value of IR is loaded into register. | Mov4a

. ALY After_executio? of .ﬁDD Rn, Rm and SUB Rn, fm, - ; - RF[rn] = RF{rn] + RE{rm
final result is stored in register. . : . .o ADD -

Y

e Three operations are performed b ALU
i RF(rn] = RF[rn] - RF{rm]

* Addition, subtraction, and comparison .] i, 0101 suB "
2. FSMD for Given Instruction Set . Re{rmj20el
« = RF[rn]¢0:re
In FSMD, the basic stages of instruction cycle are implemente! 0110)z Flo=pE el 3 ' »
states. It includes RESET, FETCH, DECODE and EXECUTE state’ . = i W S -
RESET. FETCH and DECODE states are common to almost & Figure 3.8: Finite state machine with data (FSMD

design. The EXECUTE state, however, differs when the number?

Lions are different,

type of instryc

Aliases:

r:p_ -_I-F:R1[15..12] dir—1R[7..0]
rm—lla[lar"i]] . imm—IR[7..0]
= rel-IR[7.0] | ! o

|63]

——--'.ﬂl_
| Sa'ih Design |ssues
I 62) - | ‘ Software
! nsights on Emb!ddn.a - . / i

Scanned with CamScanner

3 cDmponents‘ and Connections in Datapath anq
‘. . 0

Unit : - ' '1'1

Finite State Machine (FSM) Design

- Datapath
Control Unit ‘ Toall 4 ;
” ———— input RFs » 4x1 Muy
3 . Control | Ms=10,1rld=1 ,
Controller - RF - -
g Signals . wa Mre =1, PCinc=1
next-stateand | ———» e >
(i ' | RFwe _ RFw | e
nt 0gIC,
control 108 Franvall Gy RFwa = rn, RFwe = 1, RFs = 01 .
e register [- : ' .
state register] | output 3 Bleawa: Ms =01, Mre 1
. | Control RFrle J
4+ Signals RF (16) '
) Wren, RFr2a RFrla=rn, RFrle=1)
pcld Irld ’ ' >
pcinc | pc R [RFr2e i : Ms =01, Mwe=1 .
PCclr ' % Ry I b g
T ¥ ; ALUs D ' 0010 RFrla=rn, RFrle=1, Ms=00 :
- aldz L i s ——> RFr2a=rm,RFr2e=1,Mwe=1
; 2y 1} 0] - _ Z 1l : \ :
Ms . = o 5 4 :
—| 4x1Mux ' ' ' ' '
Mre Mwe e 0011 RFwa =rn, RFwe=1 _
: _ : i RFs=10 .
[4 ! Y Y v { : . B L_ :
A - Mémdry . D . . RErla=rn, RFrie=1
: 0100 REr2a = rm, RFr2e = 1, ALUs = 00 i
b | Res=00, RFwa =, RFwe =1
Figure 3.9: Datapath of our simple general purpose processor ' 2 \. =
i. Components in datapath ' ' h
" . RFria=rn, RFrle=1
V. egister fi :
gister file of 16x16 and a general purpose ALU. : - oto1 | RFr2a=rm,RFi2e=1,ALUS=01 ————¥
e Multiplexér of 4x1,"since the register in register file@ = | - RFs = 00, RFwa = m, RFwe = 1
have three sources; immediate data from IR, data fi 2 =i
. . | \s .
Memory, and data from ALU ; . : — s :
; : . T [F 0110 {Frla =rn, RFrle=1 '
ii. Components in control unit ' : e 2 BF I
. el) iswl 3 ALUs = 10, PCld = ALUz
e Controller for next-state and control logic, state reg : —

Program Counter, Instruction Register . , *
- Multiplexer of 4x1, since memory address can be selede;| Figure 3.10: Finite state mal:hin‘e (FSM)
PR ol .]
from three sources; address from PC, direct address fr
IR, and address from register. '

|
_ e
__‘//"ll e Software Design Issues 1651
: B ;
|64] Insights on Embedded System ! = % | : 5

Scanned with CamScanner

.Converting FSMD operatiohs to FSM operations

Example 1: MOV Rn, direct — RF[rn] = M[dir]) x hapter 4
. It means to read the content of memory of address dir (8 loy, MEMORY

of IR) and write it into one of registers of register file. Va Wary

ll.le C}f r
n ;
address of register in register file. B Vije ‘Introduction ,
. _ o) - emory Write Ability and Storage Permanence
. Address of memory is directly available in IR, using muly 5 mon Memory Types
= i * | i
selection Ms = 01 will select address from IR- For a memo ’ jifio:Com = Memary
operation, Mre must be set (Mre = 1), VSR Composing

: - Memory Hierarchy and Cache
- - . - .
_The value is to be written into register file, so RFwa = g :

™ Selgg,
register from register file and RFwe enables the write o q

peration,5 41 Introduction. o
RFs =01, as data is coming from memory. = The functionality of any embedded system can be basically divided into

processing, storage and communication. And memory is required to address
| the storage aspect of the embedded system’s functionality. Furthermore,
memory is an electronic device that is “used for the retention of information
= . be program
. . l later use. Here, information can
Example 2: ADD Rn, Rm — RF[rn] = RF[rn] + RF[rm) M o |nstru-|:t|ogn5gre re;g:zmmc:themnsmug[Ddaj;a ioof

Here, values from two registers are read and then added usmgAl operation_code along with operands, while data "'di'ctat SE——
a e
The final result is stored in register. Address of registers to be selectef operand that will-be used in the operation. In general, the instructio i

d only memory. And the data
gwen by rn and rm for read operation wh|le value of rn gives the address stored in a type of memory which we refer as read only |

ters.
register for write operation. for regular computation are e gracly stored I rels

) i ! % e d —»

] Selection of registers for read operatign: RFrla = rn and RFr2a=r = _ : <— n bits per wor
select two registers while .RFrle = 1 and RFr2e =1 enable' b
registers for read operation. '

Hence, the required Boolean expressions are: Ms = 01,

Mre »!
RFwas = rn, RFs =01

—>

|
e Adding the value of registers using ALU: ALUs = 00 represent th
addition of two registers.

<«— m words

[1]
Figure 4.1: mxn memory

. bers_ Df bits. And
ation in form of large num
e o ords are stacked together to

s S : rd. Also, W)
® ° Hence, the required Boolean expressions are: RFrla = rn, RFr2a = 'f'“is are combined “’Sfmm are\:e{; t a memory as ach
. : - s 0, we 6
R e = S R =R R R | :f:;?:‘:‘t . r::emn:er:i by m x n. For example, if a memory is specified as 409
X8 then it holdsthe following information.

register and RFwe = 1 enables the write operation. And RFs = 00 W

|
: o
° Selection of register for write operation: RFwa = rn - selects tfrI
connect the output of ALU through the mux to the selected reg|ster :

s ' Number of words in the memory (m): 4096
£ O Number of bits pet word (n): 8 R
. — — Memory 167

e ; ' & - .
166] Insights on Embedded System SeaERfEd With CarMScannaE

1 f | _ e

Total bits (m x n): 32768 bits

L]
° Number of Address lines = log,(m) = I0g1(4095} '082'1212) -
2 |
. Total input/output data signals: 8
. A memory access may refer to memory read (retrieve the 2.
" particular address) or memory write (store a word in a F'Ertlcularw "y
Control input signal r/w is used to indicate the type of access, Anothey 3ddy,

input signal, enable, which when asserted, is used to access the mep,
0

r’w —
enable ———p

I
| a
|

. Qn—l 0-0 '- .

-Figure 4.2: External view ofmémoi'y ‘ e

4.2 Memory Write Ablhty and Storage Permanence
1. . Write Ability b
I

Write abllnty refers to the manner and speed that a narncu:
memory can be written. It also can be used to represent the number¢
times a memory can be "programmed or written ,into.hln‘svstzi' .
programmable is used ‘to categorize memories into two along the wrﬁ
ability axis. In-system programmable memory can be programmed byi
processor whereas in-syste ble _memory must l
programmed by some external means. P ‘

Range of write ability: e

. “ High End — processor can write to memory m‘mbi’y and quickly b
setting its address- lines, data input bits. and control i

appropriately. Example RAM

. Middle Range - processor can write to- memory a bit slow‘
compared to high end. Example: EEPROM, FLASH
. Lower Range — special device called programmier is used to write i1, -

POy s . : . EI
the memory. The devicé must apply suitable voltage levels to write,

~ Figure 4.3: Various memories based on write ability a

‘Low End — bits are stored only once during fabrication. Example:

Mask-programmed ROM

Storage Permanence

‘Storage permanence refers to the ability of memory to hold its stored

itten. Volatile and Nonvolatile attributes

Cequ are commonly used to divide memory types into two categories along the
Y. | storage permanence axis. The nonvolatile memory can hold its bits even

1ger supplied. On the contrary, volatile memory requires

continual power to retain its data.

[Range of storage permanence:

Low End — memory in this range begins to lose its bits almost
immediately after those bits are written and therefore it must be

- refreshed perrodmally Example: DRAM .

Lower Range — memory holds bit as 10ng as power is applied to the
memory. Example: SRAM'.

. Middle Range — memorv in this range holds bits for days, months, or

even years after the memory power source has been turned off.
Example: NVRAM.

High End — memory in this end will never lose its bits, as long as the ¢
memory chip is not damaged Example: Mask Programmed ROM

b
2
g |2 Meskeprogruned ROM il oerass
v kA -
k M
Lifeof | OIP RO
Preduct
Tens of EPROM EEPROM F!:%Sll
T - .
Bk NVRAM
Battery \ﬂ-r\o;mn!e o Mo THETD
life (10 s o e ——
years}
£ In-system ’ .
pi o cumabic SR"\-“PK“'
Nene); . —_— \\:.“‘1:
i | 1 | ! | _ 1 abili
During Exterml Extenml Exteraal Exrﬁi“ IaysicaL B
TR .
o fabricavon prog P Lt L0 A writew
3 i OF wesyutan. OR in-wy o
v ooaly ouetune enly 1000 IT‘\;‘ s e anlnited

of cycles ayeles

wiites. 1.000s

of eycles e
of oyvzles

Wiite abihty and storage peimanence of memonias...
showing relative degrees along each axis (not to scale).

, ence
: and storage perman

—

the memory. E.g.: EPROM, OTPROM * - s
' - .

+ | 68] Insights on Embedded System

~
o

Memory 691

Scanned with CamScanner

4.3 * Common Memory Types

1. ReadOnly Memory (ROM)
It is a nonvolatile memory, that can be read from but ¢

written to, by a processor, but it can be Programmed b Cany, °

Ys
bits wrthm the memory Traditionall is bro rammezt iy

when i ly involved withi bedd Off

enable ——p

Ny —
—)
Ay —b

2“xnROM

I

Figure 4.4: External block diagram _ :
' Uses of ROM '

il
to store a software program for a general purpose. PTOCEssu;

to’ store constant data, Ilke Iarge lookup tables of _sjrlngs
numbers

* toimplement a combinational circuit.

ii. Internal View of the ROM | |
It consists of an address lines, word ||nes data lines; contrel i

decoder, OR gate and, programmable connections which cont
word line and data line.

Example: Internal view/sketch/design of an 8x4 ROM i

—

& ; |
datalin; . . |
I S ;
enable > NN -\.‘\ word 0 :
Ix8 ey word 1 |
decode; J333
; koder * ‘“" e word |
A= = i~ line
Ay =—n e S oS
=) i a7 i
Wol
<SS . 3
= b jr o
Programmable, Y
connections U Wired-OR
v
Q

o+(E
o« (E
o +-<Z‘-

Figure 4.5; Internal view of an 8x4 ROM .

|70] Insights on Embedded System

e Decoder selection: number of words is 8, so at least a 3x8
decoder is required. Number of output lines of decoder must be
equal or greater than number or words of ROM.

. Horlzomallmes words (8), Vertical lines = data (4)

e Word line connected to data line via the programmable
connections

_e Circles on data and word lines are connected to represent high
logic(1))
e Wired-OR represents all word fines are ORed together.
* o If word 3 needs to be read then the input of decoder is set to
011 which makes the word 3 line high and other word lines low,

since the data lines 0 and 3 are not connected to the high word
3 line, the output of the ROM__wi!I be 0110.

_jii. Implementation of Combinational Fiinctions using ROM

Example: .
Combinational functions: y = a’b'c’ + a‘bc’ +ab'c + abc. =a b c+
'hc’ + a’'bc+ab’c +abc

8x4 ROM . !_ -

Solunon)
Three inputs a, b and c is taken as address lin€s. So, for three inputs

the decoder of 3x8 must be ysed resulting in eight word Ilnes And there are.
two outputs, so there must be two data lines. Hence, a ROM of 8x2.is

' :emﬂr.ed Initially, if only combinational function is given, then its truth table

should be formed. The programming connections are done based on the
output of the functions based on the various combinations of inputs.

’_ Inputs Outputs

a b c Y Z:

0|0 |0 |1 0

= 10 |0 1 |0 |1
0o |1 o |1 |1

o |1 |10 |1

1 o |o |0 o

.1 10 |1 |1 1,

1 |1 |o [0 |0O

101 J1 1 11

_ J———
: . Memory [71] _

Scanned with CamScanner

e
K 8x2 ROM
. e It has lowest write ability of all PROMs, since it can be
ble — o<f-e+— 10 : _ Programmed only once.
ena -]
- ool 01 : ' o It ha}s very high storage permanence, since its stored bits
_ ol e 11 ; : won’t change unless; some more fuses are blown out using
decoder i :\" g 1 ' programmer,
R T | is chi i :
. T b &0 . o It is cheap which makes it more suitable in final products
b) Py " compared to other types of PROM.
SN 1 ' ble P '
a ~ . 00 ¢, Erasable Programmable ROM - EPROM
* R L o i " e EPROM uses a MOS transistor as its programmable
T I ' component. The transistor has a floating gate surrounded
. - © by insulator. When high voltage (12V — 25V) is applied, it
v , . ' causes electrons to tunnel through the insulator into the
v v — | gate. When the high voltage is removed, the electrons
vy 2 " cannot escape and hence the gate has been charged and

Figure 4.6: Truth table for given function and its lmplementalmn using qu

iv, Types of ROM

programming has occurred. To erase the program, the
electrons must be excited enough to ‘escape the gate

C which is done by expasing UV light for 5 — 30 minute. For
a. Mask-Programmed ROM ' \ : ' the UV light to reach the chip, EPROMs are provided with a

s C * gmall quartz window in the package.
onnection is programmed during fabrication, by crez

! = .
an appropriate set of masks. :

|
It has extremely low write ability. Once fabritated,l
content cannot be reprogrammed or changed.

Reéding an EPROM is much faster than writing, since
reading doesn’t require programming.

s EPROMs have improved write ability and can be
| reprogrammed thousands of times.
It has highest storage permanence. Stored bits will ney .

e EPROMs have reduced storage permanence They huld
change unless the.chip is damaged.

I * their stored bits for about 10 years.

. It is used in such embedded systems whose design K e Electrical noise or radiations causes stored bits of the chip
been finalized and large numbers of unit are needed ol subject to undesirable changes and hence i
_manufactured. | ! " scarcely used in production. It offers a better choice in the
b. One-Time Programmable ROM — OTP ROM i ' | : testing phase of the system’ rather than in production.
. p) . + | i
e Connection is programmed using a ‘device ¢ . ., Internal ApstaanIL ERfoi: ce and
| urce
programmer that configures each pmgraml‘ﬂa& a) Negative charges form a channel between 50!
connection accordmg to the file provided by U% — . * - drain storing a logic 1 charges
- i e
Programmer blows fuses by passing a large Cu"erl g b) Large positive voltage at Bate causes n%gaft,:rating gate
. wherever a connection is not required. The blown % .. : to move out of channel and get gt
fuses cannot be reestablished, hence it is referred as 0" storing a logic 0
time programmable R ' ‘ , ———remory 1731
. % s __// —_— : : _ memory 1731
172 Insights on Embedded System. .

|

Scanned Qvith CamScanner

¢) Shining UV rays on surface of floatin \
negative charges to return to channe| f
gate restoring the logic 1

Cy
om ﬂ(}:ﬁ
d) An EPROM package showing quartz Win q

A

specified address, Program the word at the user

which UV light can p Jaow ¢, |
h 4 RasS > ; "o e EEPROM provides better write abiji ‘
l. it can be repro e ability compared to EPROM
a | e Programmed tens of thousands of times ’
A | . PROM has storage '
S permanence o P
:—:'_.;.__ l about 10 years. n a par with EPROM,
g .) | e ' Writing is slower, since it involves the process of erasing
._: ; .and programming. An extra busy pin is available to indicate
that the EEPROM is busy in writing.

oy -

EEPROM can be used to serve as the program ;uemory for:
. * a microprocessor. It can also be used to store data than an
i embedded system should save after the system is off.

@Iéja e. Flash Memory
- ®) o 4 . o -
| 2 e It ig an extension of EEPROM which uses the same floating- -
. ' ~ gate principle along with same write ability and storage
permanence.

|_ . e It improves the performance of a system with its fast erase
. o ability, in which large blocks of memory can be erased all at .
' once. 5

e Writing to a single word in flash may be slower than
: writing to a single word in EEPROM, since an entire block
R ; - ‘will need to be read, updated and written back.

Figure 4.7: Writing and erasing process in EPROM 2. Randofn Access Memory - RAM
. Electrically Erasable Programmable ROM ~ EEPROM .. Itisa memory that can be both read and rwritten_ easily. Typicalhf.RAM-‘f;
o EEPROM is programmed and orased elactronically, Ui volatile, since it loses its content after the power Is removed. The interna
: . 3 ' ; i f ROMs.
higher than normal voltage. Electronic erasing requif@1 structure of RAM is comparatively cc_lmplexthan 0 :

seconds, rather than many minutes required for EPRON, t/w

Moreover, individual words <can be erased ¥ " enable

_reprogrammed in case of EEPROM, whereas EPROM ¢ A
only be erased in their entirety. ' ' |

e Itis in-system programmable since circuit providing hight == o Aa

than normal voltage levels for erasing and’programmint ; 5 C
built into the embedded system. EEPROM is built: _With‘g Qo1 Qo

* built in memory controller which hides internal mem”’l‘j _) AN
access details for the memory user and provides 3 5‘_"‘“‘;_ Figure 4.8: External view?
memiory interface to the user. The memory contf l . ' w

-1

Scanned with CamScanner

: L internal Structure of RAM

It consists of ad i

it i dress lines (A), word lines (outpy,

ok ading (Q) and writing (i, isibre) | t of decog Types of RAM
ecoder, wired-OR, and cell at each | lines (eng &), i, ypP

data lines. | ntersection of Wo:;e L+ a StaticRAM-SRAM
. | |‘ﬂe;£ e Itusesamemory cell consisting of a flip flop to store a bit
Example: Sketch the internal structure P . It requires about six transisltors to represent a single bit
> RAM « It holds data as long as power is supplied hence called f
static RAM. ‘ :

o Generally used for high-performance section of a system.

tw —> i E.g., Cache memory
[- p. Dynamic RAM
. . It uses a memory cell consisting of a MO8 transistor and
. enable

paid capacitor to store a bit
> 3x8 d

: e It requires only one transistor, resulting in more compact
Decoder

memory than SRAM
A, - e Each cell must be charged (refreshed) regularly, since the
A, » charge stored in capacitor leaks gradually causing the loss
A, > of data. '

. DRAM access tends to be slower than SRAM, since
accessing a DRAM word results in the word’s being stored
in a buffer and then being written back to the word’s cell.

13
3 W, {
’ s
(a) . (b)
Figure 4.10: (2) SRAM (b) DRAM

¢. Pseudo-Static RAM—PSRAM
e These are DRAMs with a memory refresh controller built

"Figure 4,9: Internal structure of 6x6 RAM ' |

Decoder selection is done based on number of words of.Rr‘l‘Ji
(3x8 decoder for 6 words) : |

e Each word consists of a number of memory cells, each stof
one bit.

° Each input data line and output data line is connected to eve’
cell in its column. ' |

e Output of a memory cell being ORed with the output daté i
of each column. ' T :

S : in.
® The read/write input is conniected to every cell e PSRAM may be busy refreshing itself when accessed, which
e Wired-OR is not shown in the figure 4.8. - could increase access time and add some System
complexity-
. \ e
T memory 1771

|76| Insights on Embedded System

Scanned with CamScanner

Advanced RAM

® ltisa popular low-cost high-dénSitv memor

SRAM. Y lternag,

Nonvolatile RAM -~ NVRAM

It holds data even after external power is removed
~® ‘Battery-Backed RAM: Contains a
Permanent battery connected. When power js reme. |
drgps below a certain threshold, t o

maintai . he internal p,
_maintains power and thie memory continyes to st e
s 2 : .) Qre
bits. There is no limit on the number of times the Bam'l
. e - Vel

Backed RAM can be written to. .

Static RAM with EEPROM or FLASH: This type of
stores its complete RAM contents into the EEP
before the power is turned off. The data is relo
RAM after the power is turned back in.

NVgy
ROM
aded iy

£

~ Fast Page Mode Dram (FPM DRAM)

FPM DRAM is asynchronously controlled which is designed y:

some improvements on the basic DRAM architecture. - In
_desugn, each row of the memory bit-array is viewed as a pal

which contains multiple words. Each word. is addressed bw"."
unique tolqmn addrgss. In its operation, first the row or pa;‘.
address is sent and then the corres'ponding column addve!

" must be sent to read a particular word. 'n each memary qrtle.l i

||

three data words can be read consecutively by providing the,

corresponding column address. Hence, it eliminates lJ 5
© requirement of extra cycle as three cycles would have bef

required to read three words.
L
Extended Data Out DRAM (EDO DRAM)
EDO DRAM is similar to FPM DRAM with additional feature ﬂ'ﬂ-r

reduces the read/write latency. Here, new access cycle canti

started while keepipg the data output of previous cycle activ!}
In simple words, new column address can be sent while read®
previously selected word from the memory. This results 'lf'}

overlapping of the operation which reduces the latency °|

memory access.. However, extra output latch -must ¥

introduced in the architecture.

178] Insights on Embedded System -

—

static Ray |

3. Memory Management Unit (MMU)
. Memory management unit is a processor which
address to physical memory address. MMU ha

e

synchronous DRAM (SDRAM)

In SDRAM, the information is latched to and from the controller
on the active edge of the clock signal. The time required to

‘_detéct the strobe signals in asynchronous DRAM is eliminated '
“ by SDRAM. This DRAM architecture can have additional column

address counter which holds the starting address of the data to
bé accessed. This counter is incremented internally to provide
new data in each clock cycle as long as the data required are
consecutive memory locations. The enhanced synchronous
DRAM (ESDRAM), is the improved version of the SDRAM.

- ESDRAM provides faster clocking and lower latency in reading

and writing data.
Rambus DRAM (RDRAM)

Rambus represents the bus interface architecture which uses
multiplexed address/data lines to connect the processor to the
RDRAM device. RDRAM may be further divided into number of
banks with each remain open for access. Multiple open page
scheme and fast bus 1/O can result in high throughput.

. However, as compared to other standards, Rambus_showed

increase in latency, heéat output, complexity, and cost. .
Requirement of heat-spreaders along with packet de-
multiplexors makes it more complex while manufacturing. More
complex interface circuitry and more number of memory banks

increased the size and resulted to become expensive.
Double Data Rate SDRAM (DDR SDRAM)
The DDR SDRAM is capable of making higher transfer rates with

. more strict control of the timing of the data and clock signals.

The interface transfers data on both the rising and falling edges
of the clock signal to double the data bus bandwidth. -DDR

" SDRAM also known as DDR1 was replaced by DDR2 which

‘operated on same principle but for higher clock frequeencv.,cr and
produced double throughput as compared to DDRL Similarly,
DDR3 and DDR4 offered better performance for increased bus .
speed and new features.

translates the logical
s important role in

Memory |79

Scanned with CamScanner

handling DRAM refresh, bus interface ang arbi

S s Itration
) memory. In addition, it takes care of memory sharing amg Usgy case 2: To increase the number of words
processors. Contemporary CPUs. have built-in MMU ng My, 2. e width of th 5 .
processor. i % Ty, g € word in the available memory and required

memory is same but the number of words are different then the
i) _ . words must be increased. We connect the ROMs top to bottom and
4.4 Composing Memory Sl * data line of each ROM is ORed. Since the number of words has to be

. Composing memory is needed when there is increased, extra high-order address is required to select the

sized memory, which is not readily available,
larger than required one, then:

' particular ROM which can be implemented by using appropriate
i use the needed lower . decoder.
memory_and ignore the high :

a need of pamc“i

the availa . Which are not required, ngeven .

ded to be fallowad, Th ome more desi u'." g Example 1: Compose 1Kx8 ROMs into a 4Kx8 ROM
ZLZ:ZTSCUSSECI in the fOIIOngep:?:;::;:se,s for compo;,ng memoryp,l ™ Analysis: The available ROM 1Kx8 and required ROM 4Kx8 have
1 ' i ' . " same width of 8 bits but the number of words is different. Number of

Case 1: To increase the width of words

When the number of words in the available memory is same to
of required one but the number of bits or width of word |s|J
enough then the width must be-increased. To do that, the ava|lal|

ROMs and the size of decoder can be determined as

e N = number of words in required ROM/number of words in
available ROM = 4K/1K =4

& e Decoder: It must be able to select 4 ROM, so 2x4 decoder must-
mémaries are connected side b ’
y side aslshown in the given exampl be used. otel oddrey - 1w‘gﬂé‘“}
; ' 28 2L s} fom,(1K) = log(22) - log,(2™) =
Example 1: Compose 1Kx8 ROMs into a 1Kx32 ROM : % , #ighergadress b't: logalAK Dgz{ &
" 12 —10 = 2 bits or lines
: Anal sis: The available ROM 1Kx8 and : L ;
sam:number of words but w:dth is dlffrequf:re“:': s Ef EK?.JI:J:: s Totel dddress fine; 4K 21 A gslines, and_lO i .
b ' od Side by side is given b eren St ; . Ag) are connected to each ROM. 2 higher address is represented
e plac yn. . 3
. : by inputs of decoder.
=wi jred R i il =32/8=4] ine ‘of
. _n_ﬂijji__oil:ﬂlltﬂ!.e_omlwmth ::;f available Rth1 3' /8 =4 I Hence, four ROM must be connected top to bottom and datar!tl:zlzr
* Address ne e 024 byte:;;i - 1“0 adj:;a::;mei_b*wg ~ each ROM is ORed. Decoder of 2x4 is used to select apa
P £ ; ; .
e Dataline=8lines (4 $-bils . 9 ROM.
Hence, four 1K x 8 ROMs are placed side by side to compose 1KX 3
. 1K x 32 ROM - '_ .
enable 5 = <
PTTIKRE LTIk E T [IR E T .] KxB
_ A(9-0) . ROM : ROM |-} ROM - . ROM
- i : » . . >
8 s ~¥s 8
v o v A
Q(31-24) Q(23 - 16) Q(35 - 8) Q(7-0) ' :
Figure 4.11: Composing 1Kx32 ROM from 1Kx8 ROM E. : Memory 181l

" 1801 Incioghtc An Emhaddad Suetam

Scanned with CamScanner

4K x 8 ROM

A

2x4,

Ay Decoder

Y

enable

{a

Q= Qg
Figure 4.12: Composing 4Kx8 ROM using 1Kx8 ROM

. Case 3: To increase both, number-of words and word widi
When the width of the word as well as the number of words in tk\'
available memory and required memory are different then t
technique used in case 1 and case 2 must be combined. Initially, ts
number of words is increased and then the top-bottom set of ROM'[

with ORed data lines are placed side by side to increase the wo

width.

Example 1: Compose 1Kx8 ROMs into a 4Kx16 ROM

[
: . o
Analysis: The available ROM 1Kx8 and required ROM 4Kx16 differ!
number of words as well as word width. '

Increase number of. words: 4K/1K = 4, four ROMs are requif®
with a 2 x 4 decoder. 4K represents 12 address lines, 10 I

connected to every ROM and 2 lines represented by inputs |
decoder.

y

two times and placed side by side.

__..-—/ 1

IBZ_] Insights on Embedded System

Increase word width: 16/8 = 2, four set of ROMs are repeaté .

B
Q-0

AK x 16 ROA
P —
Aa=P I
10 L7 T i
L_ | L FOM
.[———-—EF a
(—' wer = 1
ROM ™
A x4 i I POM
Jall] Decoder _
E
enable
ROM : oM |
g 81 i ||
48 |
Q \\\:/
e

Q-0

Figure 4.13: Composing 4Kx16 using 1Kx8 ROM

4,5 Memory Hierarchy and Cache

4,5.1. Memory Hierarc_hy - |

A system cannot be implemented with only fast memory as it makes
the system very expensive. Also the use of_ only slow and low cost memory
_will make system very inefficient. So, the concept of memory hierarchy
comes into action in which a system is more likely to implement slow but
"high ;:apacity'memorv for storag’e'along with fast but small memory for high
speed processing. Memory hierarchy defines the level of memory I?ased on
cost per bit, capacity and access time. As we move down_the hierarchy,

capacity increases, access time increases and cost per bit decreases.

Cache

[

Main Memory

[)
Magnetic Disk

[
.Magnetic Tape "' I ;
heend ;-

——--'_'-_-_-_—
Memory |33|

-

Figyre 4.14: Menfory hi

Scanned with CamScanner

4.5.2. Cache Memory

Cache is a small but fast memory whlch contarns ac
main memory to expedite operations of the system. Cache s d
static RAM which makes it faster as compared to main memory Esigney
time for cache can get as low as one clock cycle while main me Y- The [‘
requires several cycles. So, the instructions and data which are :10 Y&,
get accessed frequently are placed in' cache memory. Hence, Uppg

t L
access time is reduced resulting in improved performance, he e,

opY Of p or;
'Jr

During cache operation, the processor first checks
in cache. If it is available (cache hit), the word is delivere
But, however, if the word is not available (cache miss)
corresponding block of main memory is read into cach
word is made available to the processor. This operatio
cache design issues which are discussed i in the followmg p

1.

the rEqu"ed
d to the pmCE
in cache ihen
e. And fma|h,
n leads to varg/
aragraph,
Cache Mapping Techniques
Cache memory is very small as compared to main memory. Ang
blocks of main memory cannot be assigned to cache memory
once. So, cache mapping techniques are requared to assign partic,!
; block of main memory to the appropriate line in cache memol
‘There are basu:ally three types of mapping techniques which ‘l
|
|

~ discussed below.

Data

: Valid

Figure 4. 15 Direct cache mappmg

- Direct cache mapping is easy and 5|mple in implementation.

Lannw)x owever, when two blocks of main memory which are assigned
plock©

" . to a particular cache line are to be accessed frequently, then
a. Direct Mappin iz e | '
. l:lp. g (GY\.Q SP/\ O.SSGMB}N@) . unrsW: 1“‘25 cache miss occurs repeatedly This problem is commonly
In this technique, main memory block is assigned to a fi ok ora Jreferred as thrashing. Also, replacement algorithm cannot be
cache hne The cache stores the content of main memory, l “:3.:‘:‘1;:;3,]" sed, since main memory blocks are mapped to a fixed cache
tag and the valid bit. Here, the memory address is dlvlded'lru ““’! o ine. o '
the tag, the index and the offset. The index, which is defined! S e i+ odd
ke et M Fully Associative Mapping » very dlows besh Wit vodio
the cache size, represents the cache address. Index is usedL : block can be assigned to any slot "
ock ¢ ssi
select the particular cache line. The tag from main memo I thls mapplngewmalimemscy address is dwudged into tag field
: mo
address is compared to the tag stored in cache. In case thet; of cache line. I;Ii'hehmaln Tem r:;m memory is compared to each
matches, the data from the cache line is accessed. However SHIIGHSCERRE ATRIRE dt
/ tag in the cache line. After the tag matches the offset is used to
single cache line can store few blocks of main memory. 5°| [d in cache line.
rd in
select a particular block, the offset part of main memo| | 5ele:tapar‘tlcull‘womb“ 5} no‘sﬂl‘S
address is used. The-valid bit in cache is used to indicate ! Formad » S PR 2 8‘"‘“ b‘“k i ngmwa ::‘ "a'
validity of data stored iy L5 ol e o
my“'r“lm s in_tr;:e:iche slot.) A SRkl - R un 1 o wnatth s fund.ln ;ug
= i k) i 4= "TaqBie) there wwl an ‘“‘“‘ '
formal Mewery is d*""“ o D= = r"%‘l Nan
otk N0s) Loes n'M. CPu THOWL weardy
hk!r\ais dividad fulor mb/ m Sl ; \-*rgmv u"“l """3
- Memory |85]
M:f % : . {
qu thod gy a8 pakil -
mein aﬂk’m- pﬂ_‘ ‘ - .) E
aJ— T modchy L - —

Scanned with CamScanner

vitT| o |[v|T]| D

rle
@ N AN
| B -
Figure 4.16: Fully associative cache mapping

Fully associative mapping provides high' flexibility as blag,
main memory can be assigned to any cache line. However .
comparison logic is required for each cache line which

this mapping method complex and expensive to implemg! .
Miss'rate can increase if frequently required block is replat% .
it

SO appropriate replacement algorithm must be utilized
efficient cache implementation,

& SerAlssocialtive Mapping e mow praci@l fhon previy |

It is-a compromise mapping which, somehow, fallows be

Vadenf30 direct and fully associative mapping. The cache is divided i
Tog IWs)olsetl - sets, each with number of cache lines. A cache with a set af 5; .
20 7 g N is called an N-way set associative cache. Each tfiqc‘l(-of"ma-.

* memory can be mapped to particular line of any sets (fixed lij
but varying sets) or any lines of particular set (fixed set¥
amyvarying lines). Taking former case into consideration, the m;l

particular word from the set in ywhich th tag.matghes.
celniis, nathod tache dun: hol | marehan one
Sels ab ontey bocause of i g dramioabk of dirt

ng T B Mg Cwhare 1. covidnd Simut Fonaoushy accy
- e b‘mkimgarmtﬁo.) 5 Solved. (3_”

186] Insights on Embedded System
L Tws vathed Loy
@Svwa St of
Wry enki Re

__——/

o3 (na) differet Seks bt T iS4

Prsine e

it wov wignt &uo blodcy OEFS_O‘WW'»

emory address is divided into tag, indgx and offset. The infi
ield is U$Ed to select the fixed cache line, and the tag field} =
main memory is compared to tag of each sets. When ﬂi
particular sgt is selected, the offset .is _used' to_select "

;N-.____ s,

o
e

LT] <]

@Va_ﬁd’

Figure 4.17: Two-way set associafive

Set associative cache mapping is more flexible and can reduce cache
misses as compared to direct mapping. Though the block of main

.memory Is assigned to fixed cache line, block can be assigned to any

sets of cache line. And proper implementation of cache replacement

" can be used to increase cache hit rate. Also the comparison logic is

not required for every cache line rather is required for only available

‘sets, which reduce the 'complexity and expense for implementing

comparison logic.

_ Cache-Replacement Policy

When cache is full and rew main memory block is to be ass_igge_d._to
the cache then certain technigue must be used to choose which
cache lime should be replaced. This mechanism of replacing the
existing block by new set of blocks is referred as cache-replacement
policy. In direct mapping the main memory blp;k‘a!.ways_ maps to tl?e
fixed cache line, so replacemént is fixed. But fully associative and set
associative can follow va;i'ious replacement algorithms. Least Recently
Used (LRUY), First In First out (FIFO), Least-Frequently Used (LFU) and
Random‘are,fe\-.r commonly used replacerqent techniques.

 a. Random r'eplacémént replaces the block randomly without

following any specific algorithm. -

Memory |87] .

Scanned with CamScanner

COf - longey f— pevlod- o 9 =

. Useg (LRU) algorithm is based on timg iny]
the block not accessed for angeSt time is replaced by theh
block. ' .

c. First In First Out (FIFO) method uses queue me‘:hanis ‘ 2
block Yhed replace the first entered block. Each block is pusheq 'Intu:!
a1 \ergel| queue when dccessed. And when replacement is reqy,

iy
locks are popped out from the queue.

d.™ Least Frequently Used (LFU) technique is based on NUmbg
time the block is accessed. The block which is accesseg [J
number of times is replaced. '

Cache Write Techniques

A mechanism is required when content.of cache is Chanﬂed,b%

processor and the char updated to the -carresp_g.%

main_memory block. This technique of updating the main meng!
after change in cache is referred as cache write policy. There arey

common cache write policy; write-through and write-back. -

a. Wr"i'te-through is a techrique in which the main_memor,
updated immediately after the content in cache is changed. 1

technique is easier to implement but the processor has to \\] '

- for slower main memory frequent access. Also there are chan:
of unnecessary writes resulting in substantial memory traffic. i
example when a particular value is changed four times, thels

updated value must only be upgdated in the main memory. Hll 5

the memory is updated four imes for every change caus
. unnecessary memory access.

b. Write-back policy allows main memary to be updated only wh
cache line is to be replaced. Extra bit is associated with ¢
cache line to represent whether the content of cache line
changed or not. Based on that extra bit the corresponding mé
memory block is updated when cache line is about to &
r'eplaced. Extra bit and update checking increase syt

complexity;, however, it reduces number of slow main.r’merﬂfJTJ

access and avoids memory congestion.

|88 Insights on Embedded System

n 4.

cost = 20 cycles

!\.____.____.

cache Impact on System Performance

The performance of system g directly related to design and
configuration of caches. The totg) size of cache, degree of
associativity, and the data block size are important parameters that

'have direct impact on performance,

cache size is the total number of bytes that the cache can store. The

tags and extra bits, which do not contribute to the size of the cache,
are also stored in cache along with the data of main memory block.

Increasing the size of cache results in lower miss rates, however the

* access of data from the cache will be slower. So, larger cache size

does not qecessarily mean better performance.

. Degree of associativity is related to number of sets used in set

associative cache implementation. Increasing the number of sets will
improve_the hit rate. However, additional logic requirement will

" increase the access time latency.
' . cache line size represents the size of each block in cache that holds

the block of data of main memory. When line size is increased, the
main memory access time is, obviously, reduced but only at the

expense of more complex multiplexing circuitry which increases the
" " access latency. - : '

. Example: Effect of Cache Size on System Performance

Case I: Cache size = 2Kbytes, miss rate = 15%, hit cost = 2 cycles, miss

Average cost of memory Iaccess a:(0.85 x2)+(0.15x 20) =4.7 %;Ies

Case II: Cache size = 4Kbytes, miss rate = 6.5%, hit, cost = 3 cycles, .
miss cost = 20 cycles

Average cost of memory access = (0.935 x 3) + (0.65 x 20) = 4.105

cycles %

Case Iil: Cache size = 8Kbytes; miss rate = 5.565%, hit cost = 5 cycles,
miss cost = 20 cycles o :

Average cost of memory access = (0.94435 x 2) + (0.05565 x 20) =

4.8904 cycles

o partainly. i ance
In case II, increase in cache size, certainly, improved the pefforrr;e i
as average cost of memory-access is decreased. However, In f:iss ir;
increase in cache size added more cycles for memory ac _

average,

Memory |89]

Scahned with CamScanner

INTERFACING

Communication Basics

Microprocessor Inte rfacing
L]
[]

.
-Arbitration

Multilevel Bus Architectures

Advanced Communication Principles _
Serial, Parallel and Wireless Protocols W <

" Communication Basics -

Basic Terminology

I/0 Addressing
Interrupts
Direct Memory Access

Wires’

Wires are the connecting lines of two terminak
communication system. It may be uni-directional o
directional. A single line can be used to represent multi
wires with the help of small angled line drawn through it.

Bus

Bus refers to the set of wires with a single function. Addresst»i
for address, data bus for data are two examples of sit
functioned buses. Bus can also be the enitire collection of winJ
System bus, for instance, consists of address, data and cor
lines.

Port
Port is the actual conducting device on periphery wh

connects bus to processor or memory or other devicés. POM}
medium through which a signal is input to output from
processor. Port is also referred as pin which extends from the
package and that can be plugged into a socket (IC base) '
printed circuit board. Metallic balls instead of pins M3 |

. S,
present. However, metal pads are more common these day

190| Insights on Embedded System

Processor

Figure 5.1: A simple bus example

» - Timing diagram

enable
M
addr{0-11)
—
data[0-7)

rd’fwr

Memory

Timing diagram is a diagrammatic representation for describing
hardware protocol. In the diagram, time proceeds to the right along
x-axis. |t represents state of control lines or data lines. The control
lines may be either low or high, whereas the data lines — address or
gata - can be valid or not valid. Active high means that a one on
the line makes it active while active low means that a zero on the
line makes it active. Asserting a line means making it active and de-
asserting the line deactivates the line. A protocol may have several
* sub-protocols which are also called bus cycle or transaction. A bus
cycle may consist of several clock cycles.

Example: Timing Diagram for Read Protocol

el information to the designer

The timing diagram of memory read protocol gives the following

‘e The processor must set the rd’/wrline low for a read operation

'« Address of memory must be placed on addr line for atleast tonp

time before setting the enable line high.

e Setting enable line high will.cause memory to place the data on
the data line after at time tregg-

rd"/wr

enable ——/_

e

addr _(

data

—Lyeter

Figure 5.

¢

4—-:,“,‘,—"'

2: Timing diagram: memory read protocol

e,

W

Scanned with

Interfacing 1911

.

CamScanner

2. Basic protocol Concepts N ‘

1 ¢« Control methods - |
. or ; .

T ::tactor is a device that can be processor or memor, : fﬂﬂt:lermztl:ot?s are schemes for initiating and ending the data
takes part in data tr;nsfer._Actor Mﬂ-ﬂlastm_uq& | r;a::hOd; obe and handshake are two common control
master initiates the data transfer whereas a "M\EQ] g |
the initiation request. . : o ; strobe Protocol

o Data dir;‘-'_ctil:m . v | In strobe protocol, master uses a control line and activates it to

initiate the data transfer. Then the slave has certain time to put data

direction represents movemen : : ran
Data pre: t of data amon actors on data bus. Assuming data to be valid, master reads the data from -

direction of data is independent of type of actor. Either sl
%

or-<iive Gaf 610 Gt Fechive ik, o ey data bus and deactivates its cn‘ntrct! line. And both act'ors are ready
f———— _ ; for next data, transfer. The main disadvantage of strobe protocol is
e Addresses Yy _ that the master that initiates the transfer has no way of knowing
Addresses represent a special kind of data whi b e R Mave has received the data or not. _
location in_memory, a peripheral, or a register wit, reg .
peripheral. A protocol often includes both an address and gl - 1 | req —1 :
. In every memory access protocol, the address’ specifies ﬂ} ; -l ‘e data &2 =B
location where thg data should be read from or written toin it]
memory. : et e’
e Time multiplexing e a : ks At
Time multiplexing répresen;s a technique in which the pjullij:} Y . . Figure5.4: Strobe protocol .
sets of da t a time over the shared line. Numb; The flow in timing diagram can be éxplained as:
of wires requirement can be reduced to a single line at tfl 1. Master asserts reg to receive data
expense of time. The following figures show the examplesJ

' 2. Seryant puts data on data line within time toceess
- 3,.- Master receives data and deasserts reg
— el

_ 4. Servant ready-for next request
ii. ' Handshake Protocél‘___
In this protocol, servant uses _
is ready. Initially, master asserts request line_ to start tl'fe transfer.
Then the servant, taking ts time to put data an data line, asserts
= — acknowledge line to inform the master that the data is ready. Next,
Data(e) i the .rnaster,reads.the data from the data Jine and deasserts tbe

' ; 3 i acknowledge line.
] : q m request lin w hich is follo ed by:sla\re d.EBSSEl[lI'lg
req -=——] |——J I—— eque e w

¥ p o] aCtOIS are |ead\| 101 IIEXt

time multiplexing. In both cases, single bus is used to s _
multiple data at different time instant.

Master

req

Master Slave

) - - r
i A8 | is somewhat complex, it is moré

transfer. Though the PIO% 1 data avaiabilty is confirmed
: i " col as data '
' Figure 5.3: Time-multiplexed data transfer: data serialization and address/ al teliable compared .tn AERHR ' -
muxing by the sending device. o R
____,/h — Interfacing 1931
S Ainal tesiahte an Emhadded Svstem l

Scanned with CamScanner

The flow as indicated by numbers in timing diagram can b
summarized as: ¢

* a. ' Forfastresponse

1. Master asserts req line to recewe data

Figure 5.5: Handshake protocol : ~ 2. Servant puts data on data bus within time taccess, wait

line remains unused
The flow, as indicated - by numbers, in timing - diagram .. Gan

summarized as: _
Master asserts req line to receive data : ' - - 4. Servantiready for et request

3, Master receives data and deasserts reg

.

Servant puts data on data line and asserts qck i b. Forslowresponse

Sl

1
2 ; ;
Master receives data fro ta bus 1. Master asserts req to receive data
3 lves cata ?‘m ;\le and deasserts req_ _ :
&, Servant ready for next transfer

Servant can’t put data within ¢, asserts wait line

iii. Strobe/Handshake Comprl)rmse Servant puts data on bus and deasserts wait

2
3
A compromise protocol can be used to achieve the speed of strot-‘ : . 4. Master receives data and deasserts req
protocol and varying response time tolerance of handshake pmtm,l ' 5. Servant ready for next request

As represented in Figure 5.6, servant can use wait ling, if it is

ready to put data on-data line. - Example: The ISA Bus Protocol — Memory Access
o |If the servant can put data w:thm time taccess then it follow . The industry standard architecture bus .protocol is common in
. strobe protocol representing fast. resp “And wait [i; systems using an 80X86 microprocessors. The processor uses 20-bit
remains unused in this protacol. . memory address and follows compromise strobe/handshake
. inserts wait
s |f the servant can’t put the data within 2N time then it protocol. If the memory is not ready then the prm:ESSCIr[It For the

e.
master to wait longer by.asserting wait line. After the dati; * cycles. Four cycles is default for the operation to camp ®
—] first clock cycle the processor puts address on
ready, the wait line is deasserted by servant_ji_,d_ﬂliﬁ read operation, in the first clock cy bl nal. During
! 5i
receives the data. And it represents slow response as maS‘ the address line and asserts address latch ena : ‘:emow ki
5 e 5
has to wait for certain time for thé data transfer ~* second and third clock cycle, the processor asse T i
i 053l 1 signal. -After third clock cycle, the data is available on da
req | e fourth clock cycle. The timing
,] p . Finally are signals are deasserted at fou gt
. . " Master |4l ~ Servant * diagram for memory read operation and memory write opera
. d -)
. PRl I O shown in the figure below.

'

req __1?\3— reg
wait et
2
I
Figure 5.6: A strobe/handshake compromise: fast and slow response = Interfacing 195}

_// .

Laceess <

194] Insights on- Embedded System

o 2

; N
Scanned with CamScanner

. C2 i WAIT : c3 . C4 - b

;\:CJ: 52 Microprocessor Interfacing
. . | A ddressi
] et : E 5 45}_#1’;) 1/0 Addressing . _

in this section, we discuss on how mitfonrdcessgr 'C-m- —
with other different Input output peripherals, i

. I/0 addressing _bas;
; -bas
sans how they are connected to the bus structure, how addrgess s;;aiw
’ ces

are assigned to /O devices and how communication is performed between
ocessor _amd peripherals. There are two types of |f{j addressing: p
/O and bus based I/0. i hes

A[19-0) _‘f L
ALE —r—]— : . :

IMEMR |

CHRDY

r
ba‘sed I
. 1" portbased1/0 '

In.port based. I/O, a port.can be directly read from or written into
e . oy . Y-ith_t_he Ihelm:f groce?sor m_s.tructions.'lt is also referred as parallel
| ! : €3 . .c4 : 1/0..Generally the devices may be provided with one or more N-bit

Figure 5.7: ISA bus protocol - read bus cycle

Clock P
e -. 1B ports to facilitate port based 1/0-and each port is bit addressable. For
D[7-0] = _ example, 8051, AVR microcontrollers have 8 bit 1/O ports. n 8051, P1
. 3 Dsta 4 B\ = OxF7 statement will write into Port 1 of microcontroller. Also, for bit
A[19-0] —| Address e]_ addressing, P2.4 = 1 will set the pin 4 of Port 2.
it n | The port based |/0 tan be extended using appropria_fe peripheral
L which extends the number of available ports from four to six. Each
T T] ort on peripheral is associated with a register that can be read or
IMEMR A | P
:] written into by the processor.
~CHRDY le——> Pport0 ‘ le—> Port0
! i, e+ Portl > Portl
Figure 5.8: ISA bus protocol — write bus cycle Processor |e—_» Port2 Processor | Port2
For Write Operation : «— Port3 Port3 | Parallel)/O | ::fr::
» In C1, i i peripheral ok
» processor puts 20-bit address memory address on the addreﬂr. ;
line and ALE signal. " -, ' ‘
asserts ALE 5Jgna_l. (@) ‘ . (b)
. During C2 and C3, the processor puts the data on the datg line 2%} " Figure 5.9: (a) Port based /O (b) Extended parallel VO
asserts MEMW signal to enablg write operation. However, if) 2. Busbased1/0 _ . ,
memory, when not ready, deasserts CHRDY signal in C2 ther} In bus based 1/0, the processor has address, data and cy_nt_roi lines
processor inserts wait cycles until CHRDY is reasserted. * for 1/O addressing. The communication protocol is buﬂthmt: :f:z
; ; i P £ e haraw
° In cycle C4, all signals are deasserted processor, A single instruction |s_ava||ab_|e which causes th‘ o
' ' to write or read data. If a system with bus based |/O requurese% bus
Ky 1/0 then parallel I/O peripheral can h_e connected to the :\:fuo and
. Bus based 1/0 can be categorized into memory-mapP
E standard 1/0.
- = terfaclng -
196| Insights on Embedded System : . E . &

L — 8

Scanned with CamScanner

Processor

Processor

peripheral. If M/IO is zero then the addre

5SS 0 ot
system Bus corresponds to a memo: " the address bug
v ry address,

Example: The 1SA Bus Protocol - Standard 1/0

Device2

. cyce . €1 c2 CWAT ¢
. PortA porg o 3 c4
 Pony

_ .Clock %
@ . b) : (v F

Fioure 5.10: (a) Bus-based 1/O (b) Extended bus-based 1/0 wi D[7-0] " —=— '
£ . peripheral \'lj’lth Paraljy Iy . A ‘E‘
a. Memory-Mapped1/0 ; . A0l Address ,]
Memory-mapped I/0 is a type of Bus-based I/0 addressiy ALE il |
' processor to communicate with peripherals in Which_péripifﬂ . w .
are addressed using the specific existing address -si.'J;sceE;a i JOR ol o

total address space is divided into memory addres 5=
‘ peripheral address. Hence, there is loss of memory address; QDY
peripherals. Also, no special instructions for peripherals -

required for data transfer, since jnstructions like MOV useq
_memory will also work with peripherals.
)

Figure 5.11: ISA bus pll'ntocol for standard 1/O

Example: A bus with 16 bit have total of 65536 addresse! The peripherals may require service from the processor which is very
lower 32768 addresses may correspond to. memory adg much unpredictable. So there is an issue on how to serve the peripherals by

while upper 32768 correspond to 1/0 addresses, the processor as it remains busy on its own task. Polling and interrupts are
. . 5 : i to address that issue.
b. Standard1/0 A 3 two basic methods. 0 addre
1, Polling

Standard 1/O is a type of bus-based 1/O addressing in'wr'. i : ; ;
xtra control line (M/10) is to indicate whethef . Polling is a method in which s praces ar checks'fnr ?ew|ce
represents_ memory location or_peripheral, Memory locati requirement of every peripheral. This me.thod, though, is easier and
and peripherals use all sets of address for addre.ssing, 5o thett simple to implement, the repeated checking, howef.rer, wasltes r:arw
o loss: of mem'prv addresses. This' ‘addressing, howe¥; Iclock cycles_whi;h c_ould have been used to do certain useful work.
requires _special _instructions. MOV i j
memofy while IN, OUT for peripherals. Also the addr
decoding logic for peripherals is simple as the high ot
address bits can be ignore when the number of ;:E!I'ii‘-'h‘"’als

2. Interrupt

Interrupt is a feature of the processor through which the penphera_Ls

can request for service even when processor is busy in its owln tas t
. ; ; implemen

For external interrupt, there is always a pin available to impleme

less. ! interrupt feature. Whenever the interrupt pin is asserte:i, :::
. F g ich the routine for
Example: A bus with 16 bit have total of 65536 addresse® |- . Processor jump to a particular address 2t w.hu:.:l t.oens of polling, but
65536 addresses can be used to address memo® ‘b interruptis stored. Interrupt oarcomesThe 1Y a-:.;hecked after the
V . i I
peripheral. The M/IO line is used to select either memort'} interrupt, in itself, is the tyP€ of polling. The pin

198| Insights on Embedded System

Scanned with CamScanner

execution of every instruction,
cycles. :

Vectored interrupt: In vectored interrupt, peripheral ™}

Interrupt address vector “

Interrupt address vector represents the address jp wh
‘interrupt service: routine (ISR) resides. Fixed intey, it
u

vectored interrupt are two common methods by Wik i
: i]

processor obtains the address of ISR.

Fixed interrupt: In fixed interrupt, the add‘réss of subr
. ! -

built into microprocessor and femains fixed. Programme
. T Siny
h

h?s to store the ISR at that location or can put jump instry.: |
to move to actual location of ISR where programmer hag :hm |
Suppose a data from sensor (peripherall) is to b : |
processed and then a motor (peripheral2) is controlled bas:“

calculated data. The flow of actions can be summarized as:

e Peripherall +has data in its register; meanwhile "

_processor is executing its main program.

e Peripherall asserts INT to request service from i 5

processor.

location. 5

i

e The ISR is executed which reads data from peripherall
modifies it and sends the resulting data to peripheralZ4 1
the same time, peripherall deasserts INT after data is)

fromit.

o The processor retrieves its state and resumes its work

provide the address to the processor. In this method, along*
INT pin, INTA pin is also required to acknowledge tha! W

G

tingf

.o After execution of each:instruction, the processor ches s
INT pin. So processor detects the service requirementj
saves its present context and sets the PC to the fixed i

T

) P
so it does not requires it ba
; fa,

interrupt has been detected and the periphéral can provide "

address of relevant ISR using system bus. The p@fiphEﬁ]

provides the address through the data bus which is read
microprocessor, . F :

1100] Insights on Embedded Svstem

c.

_Also it provides the flexibility to assign an
. of ISR.

- Additional Interrupt Issues

The flow of actions can be summarized 1.

§ periphgrail has data in its register; at the .
; s

processor is executing its main program ame time the |

e After execution of each instruction, the processor checks
INT pin. So processor detects the service requirement and
it asserts INTA. a"

e Peripherall detects INTA and puts interrupt address vector
" on the data bus,

e Processor jumps to the address read from data bus and
executes its corresponding’ ISR. It reads data from
peripherall processes it and sends the result to the
peripheral2. Meanwhile peripherall deasserts INT after
data is read from it. '

e The processor retrieves its state and resumes its work.

Interrhpt address table: In interrupt address table, which is a

. compromise between fixed and vectored interrupt methods, a

table with ISR addresses is stored in memory of processor. A
peripheral instead provides the number, rather than the
address of ISR, corresponding to an entry in the table. One
major advantage is that the bit requirement to address the table
o number of bits of real address of ISR.

is very less compared t
d change the location

External ‘interrupts may be maskable or nonmaskable. In

maskable interrupt, the programmer can use Speciﬁcinstructian
to disable the interrupt by configuring certain bits of én_terrupt
register. It is important when more critical _work‘s need to be
executed first. Nonmaskable interrupt cannot be_ d|f.able‘d by tFI:
programmer. It requires a separate pin for drastic situations.

, i ause 2
instance, if power fails, the nonmaskable interrupt ¢an C
’ .

iti i -volatile
jump to a subroutine that stores critical data In non

' is e.
memory, before power i< completely gon

= ' Interfacing I101|

Scanned with CémScanner

5. 2 3 Dlrect Memory A Access - DMA controller

1l

Another issue regarding the interrupt is jump ¢
microprocessor. either saves complete conte OISR, N
before jumping to ISR. Some processors saye :é q‘leit:“]
consumes many cycles, while others save the sters:‘]
only. The ISR, however, must not modrf ;
isnot saved. Sty

©a
. and restoring of state of processor is an inefficient Process, singay

Introduction ~—_F

d—-p ra
‘“E—-.. 'S|
H‘Q‘

mtcrogrocessor then there will, somehow, alwa s b
We. Since the speed of the processor andJE o
ma.yr not match, data must be stored temporarily befor Ft‘rlph}
which is referred as buffering. Buffering will, certamrye pmm;
svstem performance. Also while using interrupt feature, tL”;P;ct
i

process requires many clock cycles. And, the regular program
durlng transfer of data causing more problems in the performanzg
the system. So, a separate single-purpose processor called a i
controller is req_wre,d which relieves processor from all data tran:
involving memory and peripherals. ' ' |

DMA _controller is specifically used to -transfer data betus
memories and peripherals. The peripherals request the sar\ticefﬂj

DMA controller which then re’quests control of the system busfm]

processor. After that, processor rel|nqwshes the system bus Find

the data transfer between memory and peripheral is mutlatedl
DMA controller without-the involvement of processor. Hence, !
overhead required for storing and restoring the state is elimina"*]
Also,.the processor-can continue its regular task unless it requires

system bus or the 'parth:ular data being transferred.

Block Diagram

The simple block diagram of system involving DMA contrﬂ[IEF '

shown in the figure below:

|102] Insights on Embedded System

te
V reg|5ters if itnt i

o

3a

53

" Arbitration is the mechanism throug
resource is provided to partu:u!ar requesting device,

_._______,_,__'
Program
_Mermory

eI S

Microprocessor

Data Memory

o

System Bus d
[} "

v

L i A4
re

sl
b

DMA
controller

Peripheral

Dreq
—n
Dack ack

L —
Figure 5.13: Simple system with DMA controller

operation
The flow of action for the transfer of data between penpherai and

memory using DMA can be summarized as:

. Initially, processor is busy executing its main program.
After peripheral has data within its.register it asserts request
line for service from DMA.

DMA asserts request signa- to request the system bus from

"processor. _
Processor releases the system bus after seeing the request from

DMA and.acknowledges about it to DMA.

DMA asserts acknowledge signal to peripheral, and starts

transfer of data as requested.

. ' After the completion of transfer, all control lines are deasserted

and processor retakes the control of the system bus.

Arbitratioli : . :
h which a service or shared
out of many contenting

devices for service.

=1

Priority Arbiter
i. Introduction
Priority"arbiter is a single purpose process

arbitrate among various requests from peri o
Derlphera\s, which are connected to the arbiter, can M

request for the service. Using certain priority me'-:ha"';:;
arbiter selects a pgnpheral to permit the required service-

__-—-—-—.—-_._
“nterfacing 11031

or which is used to
ipherals. Each of the

Scanned with CamScanner

figure 5.14 shows the priority arbiter

. . 3 CDnHECtQ
peripherals which use vectored interrupt to re !

quest Sef\ficem

.

° Microprocessor reads |SR address from dafa bus and jlumps i

processor which provide service to the peripherals b B into its, executes the ISR, '~_‘
con ! . L T : '
nected' to . sys_tem bus for configurations on| & . . ’After execution of requested ISR, processor retrieves its
configurations may include setting priorities of the Deriph. | . state and resumes its operatign
; frgj ;i : '
The main advan;age of this arbitration is that it cap N ‘e jv. Types of Priority Arbiter
:d"’anced FRRPhE schemes: Ao fllus:ot Si".gle'peripha “The priority among peripherals can be determined based on
oes not-have any impact on the ‘operation of whole sm‘ . basically, two schemes; fixed priority or rotating priority. '
_ The system, however, must be redesigned if new Peﬂph:" : Fixed Priority
are to be added. So, this method is less flexible ; 2 T ,
. le jf e} Each peripheral is assigned a unique rank. If two peripherals

peripherals are required to be added or removed.

. - " « simultaneously request for service then the arbiter chooses the
ii. Block Diagram

one with the higher rank. Such method is efficient when there is

Microprocessor [+ y e Bus'_ vy a clear distinction in priority among peripherals. But it can cause
i - K high-ranked peripherals to get much more servicing than other
Priority Arbiter Peripherals 1 |*| Peripherap| peripherals. . T
Inta » - l}eql .] ' ' _b. Rotating priority or Round - robin priority
- lackl in this method, each peripheral gets almost equal time for
ini Ireq2 | service from the arbiter. This priority methed is efficient when
N e there is not much difference in priority among peripherals. The

priority of beripherals changes based on the history of servicing
of those peripherals, so the arbiter can get more complex in
_ rotating priority.

Figure 5.14: Arbitration using a priority arbiter
iii. Operation '
The stepwise operation of arbitration using priority arbiteri}] .
) P P _ g priarnity 2. Daisy-Chain Arbitration
listed below: : .
- i Introduction

e Initially, microprocessor is busy in its own operation. - o a2t
' : In daisy-chain arbitration, peripherals are connected to each

* Both peripherals can assert request to priority 3rbm.’l other in daisy-chain manner. The arbitration is build within the
whict interrt:lpts processor when at least one reques’ " peripherals with each having a request and acknowledge signals
available from peripherals. ' . i . as shown in the figure 5.15. The request; signal and acknowledge

* Processor stops its current operation, stores its stat¢ a signals flow through the peripherals: peripheral’s request signal
asserts interrupt acknowledgement signal. flows downstream to processor and processor’s acknowledge -

e After acknowledged by processor, priority arbiter aSSeﬁ; signal flows upstream to requesting peripheral. The peripheral

connected first to the processor has the highest priority while
the peripheral at the end of chain has lowest priority.

The main advantage of this arbitration method is that one can

easily add or remove peripherals from the system without the
ever, does

acknowledge signal to any one peripheral based ¢
priority. :
* The selected peripheral puts its interrupt address ved?j
on the system bus, g

P requirement of system redesign. This method, how
: not support rotating priority. Also, if one peripheral is damagtfd

1104 Insights on Embedded System ' ' . ' : : ~ Interfacing [105]
Scanned with CamScanner

in the chain, other peripherals beyond that broken,
E T h :1 . i 0j
remain inaccessible as signal cannot pass through the Chal-nh'
, i

ii. Block Diagram

L System Bus
PROCESSOR &
L 4
PERIPHERAL 1 PERIPHERAL 2
INTA |—»| ACK_IN ACK_OUT » ACK_IN ACK_OuT
INT le— REQ_OUT REQ_IN [« REQ_ouT REQ_IN

iii. Operation
Suppose peripheral 2 requires service from tHe Processor)
the operation can be summarizes as: '

- system bus.

iv. Daisy Chain Aware Peripherals

Generally, peripherals have acknowledge input a
lines but daisy chain aware ' peripherals, must h
acknowledge oufput and request input lines.
peripherals do not contain acknowledge, output an

Figure 5.15: Daisy chain coriﬁguratiun

Microproce;ssor is busy in executing its own program.

The request signal from peripheral 2 is send to proces{
through the peripheral 1 and interrupt pin is asserted.
Processor stops its current .work, stores its state, i
asserts acknowledgement signal.

The acknowledgement signal reaches td peripherd
through peripheral 1. Since the request is not generatet;

peripheral 1, it passes the acknowledge signal §&
peripheral 2. ‘ : : o %

" Peripheral 2 puts its interrupt address vector o

" Microprocessor reads ISR address from data bus and Jur
into its, executes the ISR.

i . LS ’5
After execution of requested ISR, pracessor retriev®

state and resumes its operation.
nd request’

Howeve f i
d red’

tammt 5t Lin am Comhaddad Quetam

ave additi P

input e Sy Wey W“I_"Ot be daiéy chain aware peripherals.
But_ they. can be r.nade daisy chain aware by certain logic whose
‘ complexity may increase .based on complexity of system. One

simple example for making a peripheral daisy chain aware is
shown'in the figure below,

Peripheral (P)

o aci ACK_OUT
ACK ACK_
REQ_IN
REN

Figure 5.16: Simple logic to make daisy chain aware

Case 1: When request is from downstream peripherals

o Peripheral (P) does not participate in the flow of signal

‘_Case 2: When request is from upstream peripherals beyond

peripheral (P)
" o REQ_IN =1 but REQ =0, resulting in REQ_OUT =1
e ACK_IN =1 and REQ =0, resulting in ACK_OUT =1
tase 3: When, request is from peripheral (P) _
e REQ=1,REQ_IN =X (don't care), resultingin REQ_OUT = 1

* ACK_IN =1 and REQ = 1 resulting in ACK = 1 and ACK_OUT
=0 - . .

Network-Oriented Arbitration

In network-oriented arbitration, arbitration is done for multiple
microprocessors sharing a common to form a network. Arbitration is
build into the bus protocol, as bus is the only the medium that

* Connects multiple processors. However, multiple processors may try

1o access the bus simultaneously resulting in data collision. The
Protocol must be designed in such a way that the contending
Processors don't start sending the data at the same time. Also some
Statistical methods can be used so as to make chances of data
collision very rare, if not eliminate it. Some protocols use efficient

interfacing |107|

Scanned with CamScanner

5.4

1. . Two Level Bus Systems

Generally, two level bus systems consist of a hig

address encoding schemes in which high
override the lower-priority one. _ .

Multilevel Bus Architectures 8

Multilevel bus architectures are implemented in the ;
improve the overall performance of the system. One can easily p‘:ste
single high-speed bus would be enough for all the communicat esy
system. But, however, there are various drawbacks of using sy
speed bus. Few of them are discussed in the following paragraph, Bl

_This condition results to slow down the speed of t

er priority addy
By

iﬁ'ng in

T W

Inefficient interface

For a single high speed bus, each peripheral T A NQ)

o feguires g il
speed bus interface: But the peripherals may not oy,
high-speed _transfer resulting in extra power consumpl ¢

U]

increase in number of gates, and high cost. Also, the high.;p .
bus can bg very processor specific which can lead the inter)
of a peripheral to be non-portable.

Slower bus

peripher may nNo he = 0

it'can create a performance lag.

|

local bus, a-lower-speed peripheral bus and a bridge to_'_c_qurg_e_t,‘l*- ‘

buses.
A, |
Micro Cache Memory sl
255 A :
crlli s Cpntmller Controller
b Fy rs F 3
- 3 ¥ L 4
Processor-local bus
]
idge
Peripheral Peripheral Peripheral Bride

3

!

l

F'_eriphe'ral bus "”I_/' :

Figure 5.17: A two-level bus architecture

11081 Insichts on Embedded Svstem

. The Lﬁm“"' roc Lbus connects very high speed.devices such
< micro €, memory controlles, and certain high-
eed cO

: These buses are wide, i
: » @s wide as a memory
- word and frequent communication takes place through it.

. On the other _hand, the peripheral bus connects to those
. peripherqls_whlgh do not have access to processor-local bus. It

emphasizes on portability, low power, or low gate count. It is
often narrower and slower than a processor local bus. The

" frequency of communication through peripheral bus is also less

. as compared to that of processor local bus. So the interface for

peripheral bus is comparatively efficient one in terms of number
of pins, gates and power consumption.

. A bridge is a single purpose processor that connects the two
guses of the system and also makes the various conversions -

' required. S,Qﬂuymmuimhﬂmmﬁmcﬂm

of bridge. Data speed and data formats of processor-local bus is

different to that of peripheral bus, such problem is resolved by
“. bridge using various mechanisms.

_ Three level bus hierarchy

Three level bus systems consist of processor Jocal bus, system bus
and peripheral bus. A local bus connects the processor to a cache and
may support one or moré local devices.-The system bus, acting as
high-speed bus, offloads much of the traffic from the processor local

bus. And the peripheral bus is used to connect various peripherals in
‘the system.. '

' Advanced Communication Principles
: Parallel Commqnication ‘

In parallel communication, the physical layer carries Itiple bits of

E 'g-m&it‘_iﬂle. With each wire carrying a single bit, the bus consists

of data wires along with control and power lines.
Advantages
* High data throughput: Many bits are transferred at a time.

Less complexity: Easily implemented in hardware requiring only
a latch to copy data onto a data bus.

Interfacing 11091

Scanned with CamScanner

'Usage ‘ : : vt

Disadvantages

e long parallel wires can result in Ferranti effect And accor,
this effect, there is a voltage: build up due to Capac;to fdj |

" voltage at receiving end becomes more than that of ey
end.- - d"J

allgnmem
1 time,

e Little variation in wire Iength can cause data mjs
the bits at the receiving ends with reach at differen

i
It is more costly to construct and can ‘make* system bulk
cost further increases if insulation of wires to "

re
interference is considered. L vent g
Usage
® Itis used to connect devices which reside on the sam'e] .
board or same IC. Iregf

Senal Commumcatlon

In senal communlcatlon the physnr:al layer carries one bit of datag) d
One bit of datagf

time. With all bits of data passing through the single wire, the busif
composed of single data wire along with control and power lines,

Advantages

Significant reduction in the size, the corﬁplexity of e

connectors and the assoc:ated COStS

Throughput can be better for two dnstant devices as comparai
to parallel communication of two distant devices.

. It does not exhibit Ferranti effect and data rmsallgnments

D:sadvantages

4,
° Complex interfacing Iogn: and communication protocols; ﬂ’l

data are decomposed into bits at sending end, which must¥
assembled properly at recelvlng end. . e

e For short distance communication, its throughput is vefY less?
compared to that of parallel communication.

that’f
) It is used to connect distant devices. But it doesn’t mean T

e
cannot be used to connect devices at short distancé. How

it is more efficient for distant communlcatlons I

1110] Insights on Embedded System

=

3!}

- .

wireless Communication

In wireless communication, the devices do not need to be connected

physically for data transfer. Infrared and radio frequency channels
are used asa physical layer.

i, Infrared wave

Infrared wave, which cannot be seen by naked eye, uses

electr i i w_the visible
ight sgectrum Infrared waves are generated using infrared

_cﬂgc_ig whereas infrared transistors are used to detect the
infrared emitted by infrared diode. Such infrared transistors
conduct when exposed to infrared wave. One advantage of .-
infrared communication is that it is_cheap to build transmitters
and receivers.. But the main disadvantage of this sort of

 communication is that it requires line of sight between the two
devices participéting in communication. Also the range of °
communication is low, which makes it an inefficient method of
: gmmunication for distant devices. '

. Radio frequency

Radio frequency uses electromagnetic wave frequencies in the
radio_spectrum. For such communication, analog circuitry as
well as an antenna is required at communicating devices. The
main advantage of this type of communication is that the line of
sight is not required. Also the longer distance communication is

- possible. The range of communication is deperide_nt on the
transmission power, But building transmitters and receivers can
be complex and gostly in Radio Frequency communication.

) Layering

Layering. the communications process means breaking down the
Communication process into smaller to handle
interdependent categories, with each solving an important and-
somehow distinct aspect of data exchange process. Layering can also
be viewed as a hierarchical organization of.a communication protocol
where lower levels of the protocol provide services to the higher
levels. The main objective is to break the complexity of a
COmmupication protocol into simple levels which ensures easier

handling and simplified design. The physical layer provides the lower

and easier

Interfacing |111]

Scanned with CamScanner

Example:

L8

level services of sending and receiving bits or words.of dats
el service to the u_e:%ft*
4

Error Detection and Correction ‘ .)

the appli

Error detection is the process of detecting errors that ma
 during the transmission of data in any'communication Process ¢ U
can be bit error or burst of bit errors, In bit error, single bit. inrmp
transmitted data is invalid. But in case of burst of bit h
than one bit gets changed. '

1
Errorst mﬂ[!

l
Error correction is the process of corrécting the bij
detected during communication process. Parit

- two basic error. correction methods.

e that Wy,
Y and checksp, ar;

In parity check, extra bit is send along with data to provide additigy:
information about the data. If extra bit makes an odd number of lsi;
data word bits plus parity bit then it is referred as odd pa;inH

otherwise it will be even parity. The parity of data must be checiy| .

both ends of communication and the parity of the data sent must
same to that of parity of data received. This type of checking methg

is efficient for single bit error but can create problems for burst of bi} .

" errors as it is not able to detect change in even number of bits.

-Data of 7 bits — 0011010
Transmitted data with even parity — 00110101

Received data with parity — 10110101, it indicates error as it _shauld
have an even parity. .

Received data with parity = 10010101, chénge in two bits and ey
not detected. * ~ :
" In checksum error checking, multiple words of data in packets 3"2{
checked for error. The extra word which represents the XOR sum

- . , i ; T
all data words in a packet is transmitted along with packet. Though lH
can be implemented for burst of bits error, it does not account for@

-

error-combinations.. The transmitter sends the packet of data /0™

= : ng
W|t_h the r:_hecksym word which is checked at receiving end ©

‘ : ' TR nts
reception. If the checksum word is correct then it represe)
s b - —

successful transmission. However, few error combinations

111'21 Insigh_t's on Embedded System

genefaté the checksum word same 5 received

‘ in such case the error
checking fails.

Example’ :

pata words of packet to be transmitted: 010101, 011101, 110&]11

101100
_Checksum word at transmitter: 010111 (XOR or all data words)

received checksum word: 010111
peceived data words of packet: 110101, 010101, 110011, 101100,
error exists

Calculate ;hécksum word at receiver: 111111, checksum does not
match, error check success.

Received data words of packet: 010101, 011101, 110011, 101100,

error exists

Calculate checksum word at receiver: 010111, checksum match, error
check fails.

- Serial, Parallel and Wireless Protocols

Serial Protocol
i Inter-IC or 12C or I'C

12C is a serial protocol for two-wire interface to connect low-

. g devices like_microcontroll
converters, '1/0 interfaces and other similar peripherals ip

embedded systems. The 12C has 7-bit or 10-bit address space.

Seven bit addressing allows a total of 128 devices to
communication over a shared 12C bus. The common speed of
12C bus is 100 Kbit/s in standard mode and 10 Kbit/s in low-
speed mode, Recént revisions of 12C can host more nodes and
run at faster speeds: 400 Kbit/s in fast mode, 1 Mbit/s in fast
mode plus and 3.4 Mbit/s in high speed mode. |2C uses only two
wires: SCL (serial clock) and SDA (serial data). Length of the

© Wires is not limited as long as the total bus capacitance is less
than 400pf. ‘

- Interfacing |113|"

Scanned with CamScanner

vupy

SCL.. = ; \
SDA |
h 3 r 3
v
Microcontroller * Y G & =
ADC | EEPROM S
Master . Ensor
Slave
Slave Sla\r
e
Figure 5.18: 12C bus structure
s - From Servant F"’“"Rece{ue
—'_/ SR *’ Vi o r
c : Sk odo - P b N g o its o
o L_las|_Jas ClalC T T Lhe BT
L R A e s g Koo

modib i, A ST
Figure 5.19: Timing diagram of a typical read!wﬂte cycle

A typical 12C byte write cycle operates as follows:

® The master initiates the transfer with a start conditiy;

Start condition is represented by a high to low transition;
SDA line while the SCL is held high.

written is sent with most significant bit down to the lex
significant bit. ;

_. _For write operation, the master sends a zero after sendiy

the address. And the slave acknowledges the transmissiof

by holding the SDA line low during first ACK clock cycle.

e Next, the master transmits a byte of. data with mo
significant bit first. ' '

® The slave acknowledges the reception of data by holdi

the SDA line low during second ACK clock cycle.

e Finally, master terminates the transfer by generati®’f

!
stop condition. Stop condition is represented by a 10%
high transition of SDA line while the SCL is held high-

Serial Peripheral Interface (SPI)

The serial perfpheral Interface bus is a mghmnaus—iﬂw

communication interface specification used for M

ot . 550
communication. It-is used to send data bet

controllers_and small peripherals. |t_us_e_rﬁ_e);.!a.l:al‘-lizel

|114] Insights on Embedded System

Then, the address of the device to which the dataistopf

pres
(118

_ should be communicated with, Th
. signals: SCLK — serial clock, MOS| -

"more slave devices. Fyl|
throughput, simple software a
-are few characteristics of SPI protocol.

_de_ﬁnagd, serial communications bus originally developed f

ata lines along with 3 select line to ch

Q0se the device that
e SPI by :

$ consists of foyr logic
Master Output Slay

el
MISQ_" Master Input-Slave Output, angd S5 - Slave select Thnep:gi
bus can operate with a single master device and wit'n. one or
duplex communication, higher

nd hardware implementation, etc

" Control Area Network (CAN)

CAN is an international standardization organization (1S0)

or the
automotive industry to replace the complex wiring harness with

a two wire bus. The specification calls for high immunity to
electrical interference and the ability to self-diagnose and repair

~ data_errors. These features have led to. CAN's popularity in a

variety of industries including building automation, medical, and
manufacturing. ’

Some of the characteristics of the CAN protocol includes high-

- integrity serial data communications, real-time support, data

rates -up ‘to 1 Mbit/s, error detection and confinement
capabilities. Balanced differential signaling in CAN protocol not
only.reduces noise coupling but also allows high signaling rates
over twister pair cable. The CAN protocol incorporates five

methods of error checking which forces transmitting node to

resent the message until it is received correctly. But if the error
limit is reached then the faulty node is deprived of transmit
capability. Faulty nodes are automatically dropped from the
bus, which prevents any single node from hringing a_network
down. ;I'.his error containment also allows nodes to be added to
a bus while the system is in operation, otherwise known as hot-
plugging. It impien{ents a non-destructive, bit-wise arbitration in

- which the node winning arbitration continues with the message

without being corrupted by another node. The high Spee‘d-lso
11898 standard specifications are given for a maxlfnum
signaling rate of 1 Mbps with a bus length of 40m with 3

‘maximum of 30 nodes.

Interfacing |1151

A

<
1%

Scanned with CamScanner

To summarize, the protc_:;o'llf.deﬁnes data packet form, \ USB hubs and standalone hubs can b;e used t
= 0 i
transmission rules tt?,pr:or: ize mr:zssages, guarant_ee Talen% of convenient: USB ports, Usg host control| provide handy
times, allow for multlplg e a;ldles transmissio, ermf’ control the driver software and bandwidth rers e el
. ; “dicting i ; equi
retransmit corrupted messages, and distinguish bety,]' ~ peripheral connected to the buys, e by each
permanent failures of a node versus temporary efrors . eIF o : : :
: elrr
FireWire is a serial bus protocol for high-speed
s it by ATGle 519 Ealo edgb P 2 gata transfer,g{ The peripheral component interconnect (pci) bys is a high
“may refer this protocol as IEEE 1394. It sup ! performarnce bus for attaching hardware devices in a computer.
information transfer and all L i Ports U | It is synchronous bus architecture wi all daj&ﬂamferibemg
communication without the involvement of _ ey performed relative to a system clock. The maximum clock rate
L) ‘Sonie. 6f the SHiarcleriitios of FireWiremmprotocmmm . can go up to 66MHz; however, use of 33MHz i very common in
_ . Nelyg, personal computers.-So_the transfer rate can v.
“"“":ferbrate; ‘l’pt" ‘L”‘:i Mbit/s, plug and play and hot sy e | 512 MB/s. PCI implemj]ts a 32-bi aw::;r:eslssz t: '
packet based layered design structure and provision of oo | o | 2
; POy ' Data_bus which allows reduced pin count on th
through th 3 : : nt on the PCl connecter
nef\r;f(frk toe.;j:sl;tﬁ::?ot:; 64bh't, addressing allows a localry _ resulting in lower. cost' and smaller package size. It supports
nodes. FireWire devic > -nEt-w oIS, gach Con'..ilstlngofsi Y rigorous auto configuration mechanisms “which - allow
, MRTER T devices o organ|zed at the bus in a tree identification of the type of device and the company that
daisy thain topology. In arbitration, the closest node requestigf produced it. In PCI, any device has t} ; | of
Zor the data ttransfer gets the high priority. It provides,m-‘%, of the bus and initiate ;:ransactiuns with any. other device
ran x| i - = .
FLMEMMEMAM“—D”& h making multiple _master implementations easier which
asynchronous be initj agj otherwise ad | ifficult.
data arrives in a buffer. But, in isochronous data transfer_dat:} o ' '
flQws at a pre-set rate. o . '
V. Universal Serial Bus (USB) ARM bus was designed to connect and manage different
' - function blocks in-a system on a chip (SoC) designs. It suppogts

The universal serial bus (USB) protocol was designed to connetf®
a,wide range of peripherals to a computer, including pointité -

devices, displays, data storage, ‘communication devices and

other devices. It standardized the connection of computff

peripherals to personal computers, both to communicate and®

' 32-bit data transfer and 32-bit addressing and is implemented

using synchronous data transfer architecture. The transfer rate

is the function of the clock speed used in-a particular
application.. The ARM Advanced Microcontroller Bus
Architecture is-an open-standard for-on chip interconnection,

supply electric pbWer. The original USB 1.0 specification deﬁned

! : Wi
data transfer rates of 1.5 Mbit/s for low data rate devices anl .ereless Protocols -
I Infrared Data Association (IrDA)

12 Mbit/s for high speed devices. The transfer. rate for USB 20V

480 Mbit/s while for USB 3.0 it can go up to 5 Gbit/s. UsB 0:5
The-Go is the special feature of USB in -which two USB devic
communicate with each other without requiring a separaté

~host. USB uses a tiered star topology, which means som¢ 5
her:

The infrared data association “(IrDA) is an international
organization that creates- and promotes infrared data

interconnection stapdards. It provides specifications for 2

ess infrared ications.

- cte. i ike smart
IrDA has been mﬂﬂmgmgg,iu_mame_@wﬂ*—“—

Interfacing [117] {

- devices can serve as connection ports for other USB perip

|116] Insights on Embedded System _ L
Scanned with CamScanner

phones, Iaptops cameras, etc. It s desrgnedt s
communlcat:on between two devices over _Point , llgt rate can go up to 54 'Mbps

i me standard, whil .
mfrared at speeds between 9.6 kbps and 4 Mbps. Siin h B Witg;:Gbit/s ile few latest standards may support up
y .to . :

low cost of IrDA hardware makes it an attractive Optig 51

line of sight, very low bit error rate and phvsmatly secy on *"'s, 3 ~ The PHYI Ia:er defines the means o ittin b:ts Ovexin
' connectin
transfer are few important features of Irpa. Other e g) physical I:I - mi’:’tw{ork nodes. It provides an electrical,
ic ura
technologies with no requirement of direct ine of h mechan P interface to the transmission
medium. Modulation, line coding, synchronization are few

cheaper to manufacture. The data

- . B
:—::E::scf:dlif:as:?::::l;: lsez:":o‘:z:f;za:Leu:;:T;e inter rerg | " functions, out of many, performed by the physical layer. The
MAC layer provides the addressing and channel access control
ii. . Bluetooth . ; : mechanism that ensures the communication of several nodes
T T ——— tehhﬁoldgy standard for exchans: within a shared medium. Each device is assigned a unique serial
over short distances from fixed and mobile devices, |t UPEr; number which is also known as MAC address. , Unique MAC
at frequencies between’'2402 and 2480 MHz which j amkgsumﬂmmmmmm

globally unlicensed Industrial, Scientific and Medical (Isy) ?“. 3 destination—within—a—sub-aetwark. Multiple a;cesslpro;oc::
GHz short-range frequent band. Since Bluetooth uses 5 rady allows se\:'eral stations connected to Thle samep Vs':at:!"e:s I:Jhe
based link, it does not require line of sight for communicatiy | to shar.ﬂT it. The most 'common 'mmt:?T a;cess p;it: A
Bluetooth 4.0 may provide the transfer rate of up to 25Mby; contention based Carrier SenTe Multiple Access
Bluetooth -is a packet based protoco[with a _master-ga Avoidance (CSMA/CD) protacol.
structure and one master may communicates up to maximymn
seven slave devices Low power consumption and short rang _ .
based communication is the typlcal feature of Bluetoottf - . § : - - .
Permitted transmission power and range of communicatio
depend on the radios class. For class-3 radio, range is up to Inp
‘with max permstted power of about 1mW. The range is abat
’ 10m and 2.5mW power is permitted in case of class 2 radis
and class 1 radios have a range of about 100m and 100mW i
transmission power. Handsfree headset and wireless speake®
are two, out of many,.examples using Bluetooth.

iii. |EEE 802.11

- = |
IEEE 802.11 is a set of media access control (MAC} and PhVS'Z
layer (PHY) specrflcatlons for implementing wireless local a"

network. IEEE 802.11, often_termed as Wi-Fi, *has the da:
transfer rate-of around 1-2Mbps. IM
standards, each with a letter suffix; 802.11a, 802_1,19.,3.QZJ1: ‘
802.11n standards are quite common. All these 802.11 W:HI :
standards operate .wjthin the ISM frequency bands. GE"‘“"{&rI
2.4 GHz band is common which also makes the chips Eas'er ?

v

interfacing (1191

|118] Insights on Embedded System

Scanned with CamScanner

ChapterG _ O |
REAL TIME OPERATING SYSTE,

| Operating System Bas_ics

: . Task Process and Threads

° Multiprocessing and Multitasking
° Task Scheduling

o Task Synchronization

° Device Driyers !

6.1 Operating System Basics

The operating system acts as a .bridge betwee
applications/tasks and the underlying system resources’ thr
system functionalities and services: The primary function o
system is

n thE Uy

Make the system convenient to use

' and '_ser\"

system cal

U.Ugh a set ¢ ¥
f an l)peratil.i

Organize and manage the system resources effiéiently and correcty :

" The followi[\g figure shows the basic components of an operaty
system and their interfaces with rest of the world.)

1 B

User Application
) =

Application
Programming
Interface (API)

Memory management

[

_
[

L File System management

Process management

Time management

)

J

i

)
L |/O System management]

B |

1E
Underlying hardware

/ Device Driver
Interface

»

Figure 6.1: Operating system architecture

1120] Insights on Embedded System

'paris on of General Purpqse 0s (GPOS) wi

C505) i

[R Genefal purpose operating system is so
esoUrces and provides common servic

ﬂs{em'tem- In case of real time operating syst

the sy5 ices it performs certain functibn‘ Withi

th Real Time og

ftware that manages all the
€ 10 all programs running in
em, along with management

N a specified time constraint
; e, both operating systems provide 5 number of services to
HoweV.

pplcation ProBFams and users. Applicaton programming nterfaces ap) or
s are the medium through which the Services are accessed by the
ications: ol

The differerices between GPOS and RTOS.can pe clarified using
fallowi"g parameters.

apP'

; peterministic nature
Is

RTOS are deterministic in nature; the time required to execute the
services is fixed. However, there may not be fixed time defined for
any service in case of GPOS.

Task scheduling
RTOS uses priority based preemptive scheduling, while scheduling in
GPOS is defined so as to achieve high throughput. In RTOS, high
priority process execution will override the low priority ones. In
GPOS, high priority process may be delayed to perform several low
priority tasks. !
-Time critical systems
RTOS is used in time critical sysitems' in which delay in processing can
" result in -undesirable consequences. However, GPOS are
implemented in non-time critical systems.
Preemptive kernel .
The kernel c;f an RTOS is preemhtive where as a GPOS kernel is non-
F"’EEmﬁtive_ In preemptive kernel, the high priority user pltoces.s cian
Preempt a kernel call. In other words, the execution of low priarity
System process can be stopped by high priority user process.

Priority inversion problem

i Priority inversio.n probiem is seen in RTOS in :."-'hichl
task has to wait for the shared resource occupied by

the high priority
ow priority task.

j121]

Real Time Operating System

Scanned with CamScanner

6.1.1.The Kernel

managing the system resources and the communication
_hardware and other system services. It acts as the abstraction layer bety, :

system resources and user applications. The kernel containg
services for handling the following.

1.

3.

“responsible for

This results in execution of low priority task first rather ¢
priority task. ' ‘

han hi&h

The kernel is the core of the 6perating system é_“d is TESponsi‘t;I;f\' §
r

_amung ¢

differg

Process Management -

It includes setting up the memory space for the process, ’anding the
process’s code into the memory space, allocating system Fésource
scheduling and managing the 'executio_n of the process, setting |,
and managing' the ‘process control block (PCB), Inter Procey

Communication and Synchronization, process termination/deletig,
etc. T

Primary Memory Management

The term primary memory refers to the volatile memory (RAN|
where processes are loaded and-variables and shared data associated
with each process are stored. The memory management unit (MM
of the kernel is responsible for '

e Keeping track of which part of the memory area is curr_enth
used by which process

. Allocating and de-allocating memory space on a need bas
(dynamic memory allocation)

File System Management . . :

File is a collection of related information. A file could be a prograf
text files, word documents, audio/video files, etc. Each of these files
differs in the kind of information they hold and the way in whéch_lh‘
information is stored. The file operation is a useful service prmﬂd"_d
by the OS. The file system management service of Kemel®

® The creation, deletion and alteration of files and directories

® Saving of files in the secondary storage memory

1122] insights on Embedded System

I

- gystem. In"a well-structured S, the direct as

~&Xample:

prc-:vidi“g automatic allocatjon of

. fI!E S
~ amount of free space available

Pace baseq on the
providing flexible naming convention for the files

1/0 system (Device) Management
cernel is responsible for routing the 170 re

s Quests comj
iferent user applications to the appropriat Mg from

e I/o devices of the

are not allowed and the access to them are Provided through 5 set f
Applécation Programming Intéerfaces °

| ogra . (APIs) €Xposed by the kernel
1 kernel maintains a list of all 1/0 devices of the system, The Iist'

may be available in advance and recent kerne dynamically updates

the list of available devices. The service /Device Manager’ of the °

kernel is responsible for handling all 1/0 device relateq operations
The kernel talks to the 1/0 device through a set of |oy level system
calls, which are implemented.in a service, called device drivers, The

device manager is responsible for

¢ Loading and unloading of device drivers

' . Exchanging information and the system specific control signals

‘to and from the device '

‘Secondary Storage Management

The secondary storage management deals with managing the

secondary storage memory devices that are connected to the system.

Secondary memory is used as backup medium for programs and data
since the main"memorv is volatile. In most systems, the secondary

.Storage is kept in disks (hard disk). The secondary storage

management service of kernel deals with’

. Disk storage allocation

* Disk scheduling (time interval at which the disk s aciielie
~ backup data) i

Free disk space management

Prote;ti'o'n Systems ' '

Modern OPeratiné, systems are designed in such

Multiple users with different Ievgls'of accgss
Standard, Restricte

a way to support
permissions (For

4 Guest, €tk
Administrator,

ratl 123
" Real Time Operating System |

Scanned with CamScanner

sessing of |/0 devices

o

resources,

Interrupt Handjer

Kernel Provides 3 meéhanism 'to handlé_alll

interrupts generated by the system. Based upon t
Jnterrupt the process either runs.in the foregroun
Depending on the type of operating system, a ke
lesser number of services of more number of services which p,
include network .communication, . network Management, us:: [
interface g'raphi_cs,_ timer _ services (delays, timeouts, etc), ey :
handler, database management, etc.

external}im%
he- Priority o ty
dor bad(gi'uu,-,i
rnel may ':Wain

1.

6.1.2.Real ‘Time Kernel

A real-time kernel is software that manages the time yf
microprocessor to ensure that time-critical events are processed
efficiently as possible. The use of a kernel simplifies the design of embedde
systems because -it allows the system to be divided -into multik
‘independent elements called tasks. A task is a simple program that thinksit
has the microprocessor all to itself. Each task has its own stack space and
each task is dedicated to a specific function in your product. The kernel i
responsible for keeping track of the top-of-stack for each of the different
tasks. Most real-time kernels are preemptive. This means that the kernel wil
always try to ‘execute the highest priority task that is ready to run
Scheduling is a function performed by the real-time kernel to determine
whether a more important task needs to run. Real-time kernels provide?
mechanism called a semaphore that tasks need to use in order to access?
shared variable, array, data structure, and 1/0 device.

6.1.3.Kernel Space and User Space ' _

The program code corresponding to the kernel alpplica'tic:ns/sef,.‘*'iEes
are kept in a contiguous area of primary memory and are protected fro"
un-authorized access by user programs/applications. The memory space d
which the kernel code is located is known as ‘Kernel Space’. Similarly, d

__—-'/

|‘124| Insights on Embedded System ..

. es 0 . e
s o el archit 1 A e
-1/:21!53‘1 on the kern itecture/design, kernels ¢an be classifieq

iit0 M

_+ SVenif the server fails; Memory

“catiol:'S are loaded 1o a specific areg of Primary memory and th
and this

PR rred as ‘User Space’. R
rea 15 rale PACE’. User space is the memory area

o applications are loaded and executeq, 4, Partition;
10 kernel and user-space is purely 0g dependent ning of
!)

f Kernel

oﬂO'ithic 3nd Micro.

M onolithic Kernel . _

i monolithic kernel architecture, all kernel services run in the kernel
¢pace. Here qll kernel modules run within the same memory space
under @ single kernel thread. It runs all basic system services and
provides powerful abstraction of the underlying hardware, Amount
of context switches and messaging involved are greatly reduced
which makes it run faster than microkernel. The major drawback of

" monolithic kernel is that any error.or failure in any one of the kernel

modules leads to the crashing of the entire kernel application. The
inclusion of all basic services in kernel space leads to different
drawbacks such as requirement of large kernel size, lacking
exténsibility, poor maintainability. LINUX; SOLARIS, MS-DOS kernels
are examples of monolithic kernel.

Applications

~ Monolithic kernel with all operating
system services running in kernel space

Figure 6;2: The monolithic kernel model

Microkernel

tial set of
: . . - only the essen
The microkernel : design incorporates oY tion and /O control

; : : unica
Operating system services such as commt system services are
Into- the -kernel. The rest of the Opfratmgg- which runs in user
mplemented in programs known 35 .SENEtLE cernel is unaffected .
. nolithic as)
SPace. It is more stable than m'cl)\:anage}nent, piocess Managerm<t™

Real Time Operatlng Sy

-

Scanned with CamScanner

. -
timer systems and in

terrupt handlers ar.

t _o_f microkerne#.
approach offers the following benefits,
L]

. Which forms the par

& the esseny,

. . Sep.
Mlcrok'ernel based W'fg

If a problem is encountered

] 'Server"_application, the same can be reconfigured 5
w‘itlhout the need for re-starting the entire 05,
Configura bility: ' |

in any 'of the service, Which y
Ny
nd re.sm:

Services can be changed, updated without

essential services residing within the mi

Corruptin'g iy
crokerne| '

Servers (Kernel
services running in
user space)

Applications

Microkernel with essential services
like memory management, process
management, timer systems etc...

' Figure 6.3: The microkernel model

6.2 Task Process and Threads

A task is"deﬁned_ as a program in execution and related informatior
maintained by OS for that program. Task is also known as ‘job’ in f¢
‘operating system context. A program or part of it in execution i

a ‘Process’. The terms ‘task’, job’

and ‘process’ refer to the same entity!
the operating system context and most often they are used jnterchangeabl

6.2.1 Process

I

A process is an instance of a program or part of program "
execution. A process requires various system resources such as the CPUT
executing the process, memory for storing the code corresponding to t°
process and associated variables, 1/0 devices for information exchange elta-
A program by itself is not a Pprocess; a program is a passive entity, such @ |
file containing a list of instructions stored on the disk (executable filel-

adend

11261 Incichtc An Emalanaa_ 3~ .

_ EQD
Robustness: : :

- corresponding to the process.

an active entity. A program beco

mes 3 Process wh
- i - e
Prf"essb:e file is loaded into memory. P
P e .
- peC cture of a Process
. souct -

ocess holds a set of registers, process staty
A pr to point to the next executable instruction
| {Pf]holding the local variables associateq it
_fo b corresponding to the process. From a Memory perspective, the
co ofi occupied by the process is Separated intg t
n:::(memory, data memory and code memory,
: ,

S @ Program Counter
of the Process, a stack.
h the process and the.

hree regjons,

The stack memory holds all temporary data such as variables local to

the process. Data memory holds all global data for the process. The .

de memory contains the program
co :

code (instructions)

Process
[stack (Stack pointer)

Working registers

Status registers -

Program counter (PC)

Code Memory
corresponding to
the Process

—_—

' Figﬁre 6.4: Structure of a process

Process States and State Transition st -
The proceés traverses through a series of sta.test : st:te. The cycle
from the ne\ﬁlv creafed state 1 .the term;n:r: ‘newly created’ to
through which a process changes r'ts statel"f:; cycle’.

‘execution completed’ is known as process li

sl ated.
: ss is being crea
. t which a process, ted state
+ it is the state 3 in the crea
. ﬁ:-]ealted st;tgg ;ystem recognizes a Process in
e operatin

rocess‘.
- ated tothep) intothe .
- but no resources are alloc ht;ere'a process 1S loaded int . |

time for execution. The
ikt d by the 05- |
e maintained bY |

Ready state: It is the staté rocessor
memory and awaiting the P

L 'list queu .
process is placed i the re2dY ! e gystem (127
— poal Time Operd

Scanned with CamScanner

T

e Running state: Itis the state where the source ¢cg
corresponding to the process are being execut
execution'happens in this state,

deinsty,,..

Ctig
Ed The DTDQE::

« Blocked/waiting state: it refers to a state at where 4 Minp:
process is temporarily suspended from execution ang dUES""ng
have immediate access to resources, The blocked state mighltnm
invoked by various conditiong b

b
/ SS enterg 3
state for an event to occur or

like: the proce
Waiting for getting Ao l:lt
shared resource, _

1
¢ Terminated/completed state: It is

a state where the Proce,
completes its execution.

state may be restated as Pending state and so on.

Blocked

I/0 Completion

Waiting for I/0
Shared Resources acquired

Waiting for Shared Resources 3

Scheduled for
Execution .

Loaded into

Execution
Created

Running

Interrupted or
Preempted

Figure 6.5: Process states and state transition representation

3. Process Control Block (PCB)

Each process is represented in the OS by a process control biock. A
PCB serves as a repository for any information that may vary form
process to process. A PCB contains ‘many. pieces of information
associated with a specific process. .

* Process state: The state' may be new, ready, running

waiting/blocked/pending or completed,

- ; : ian 10
®* Program counter: It indicates the address of next instruction t

be executed for current process.

1128 Insights on Embedded System

622 Threads
~ A thread, basic unit of CPU utilization, is a single sequential flow of
antrol within @ process. A process can have many threads of execution,

ifferent threads which are part of process share the data memory, code
) mory and the heap memory.

Code Memory Code Memory
Data Memor\} Data Memory
Stack Stack Stack Stack
Rlegisters - Regis_t-ers Registers | Registers
| T_h__Thread‘ Threadl | Thread2 Thread3 |
S EREEES
- ;

- Figure 6.6: Single-threaded

: . ad status
However, the threads maintain their own t:}ri pr
. Valug), Program counter (PC) and stack.

cpu registers: They include accumulators jn e, regist

> : . ers,
pointers, general purpose registers along it s Stack
registers- The content of pC along with the Y Status

. State infOrmati i
3 process must be saved when an interrupt oceurs on of
cpu scheduling information: Thjs infor

Mation inclyges t
process priority and the pointers to'the sc he

heduling queyes

This information includes (,
ables depending upon the

Memory management information:
the value of the base registers, page t
_'memory system used by the 0S,

Accounting information: This information incly
[]

des the amount
of CPU time, time limits and process numbers,

. 1/0 status information:

It includes the list of I/O devices
allocated to a process.

Figtllre 6.7: Multi-threaded pruf:ess

process (CPU register

acess has multiple ,
task at a time- Itis

. han one
threads of control, it can perform moret 5 single thread of

ess has
Glleq 5 multithreaded process. If 8 Proces
: em (1291

. ing Syst
i me operatll'lg !
feal i Scanned with CamScanner

ol it can Perfor
Process,

~ Concept of Multith
A process contain va
devices Connected
,calculations/operati
functions of a task

- Process and the efficient utilization of the processor. ti
resources, '

'The benefits of -multi-threaded can be broken down into
fdlloyving major categories: ;

*allow a program to continue running even if part of it is blockef

reading

rious sub-operations like getting inpyy fro

to the ‘Processor, performing Some jp,
Ons, updating some 1/0 devices et f 5 th:m#
are executed jn sequence, the CPU utilizationS

=

me anf

Responsiveness: Multi-threading on interactive application my

or is performing a lengthy operation, thereby 'increasirg'
responsiveness to the user. ;
Economical: Process creation is costly in terms of allocatiy
memory and resources, MuitipTe ‘thread "creation within ¢
process is economical because threads share the resources?
the process to which they belong (code, data, heap memonife
Creation of threads and context-switch of threads is egonbmial

Utilization of multiprocessor architecture: The benefits
multithreading can be greatiy increased in a multi—procﬁ?* i
arcHEtecturg,- where threads may be running in 'Pafal,lel-“
different processors. A single threaded process can onhﬂ""’”“f);'lfI
oﬁe processor, no matter how many processors are a\!allﬂsa
Multi-threading .on a multipracessor machine incred
concurrency.

1130] Insights on Embedded System

M a single taslg and is célled single th
SN "Ead
Y

grficient CPU utilization: cpy ;g
rocess is split into different threg
wait/block state, the CPU can pe uti

: process_.ThiS'speeds up the execyt;

' Baged all the time. Since

c.is, When 3 threag enters :

lized by othe, threads of e

. On of a proceg;

yserlev el & Kernel level threags

. yser Level Threads

i The user level threads don't have kerne|
exists only in a running process. Even
multiple user level threads, the o5 treats
is the responsibility of the process to sc
and when ever required. User |eve| thy,

non-preemptive at the thread level from

/0S support and they
if a Process contains
itasa single threag. It
hedule each thread as
eads of a process are
the 0S perspective,
Kernel Level Threads

These are individual units of execution, which the s treats as
separate threads. The OS interrupts the execution of the
currently running kernel thread and switches the execution of
another kernel thread based on the scheduling policies
implemented by the OS. Kernel level threads are pre-emptive.

Rlelationship Between User Level Thread and Kernel Level
Thread _ . .

There are many ways-for binding/connecting user level threads with
kernel level threads.

. Manly to one model: Many user Iével threads are mapped to a
~ single kernel thread. The kernel treats all user level threads as
single thread énd the execution switching among the user level
threads happené when a currently executing user level thread

: \toluntarih} blocks itself or relinquishes the CPU.

* One to one model: Each user level thread is bonded i:a:
kernel/system level thread. It provides more cnncurref:?when
the many to one model by allowing another thread|:°|e threads

a thread makes a blocking system call. It a!lcws mur ;:ve[thread
t0 run in parallel on multiprocessor. Creating a use

i level thread.
requires creating a corresponding kerne_l ; e
I xes many user level thr

lopers can
hreads. Deve
level t cary. and the

Many to many model: It multiple

|
a no of kerne
smaller or equal hreads as nece

erating System 1

Real Time Op

Scanned with CamScanner

w
o
[}
(w]
=,
= |
(=]
%]
-
“y
~
s

and managing threads

- There are two rima a
thread library. 2 e

The first'approach is to
with no kernel/0s supp
exists in user space. This
results in a local function

Provide a library entirely by the user ¢
ort.lAII.code and data structure fo, libry
means that invoking a function in the Jipy,
call in user space and not a system ca||.
The second approach is to implement a kerne| lévei library SUpport
directly by the 0. In this case, code and data structure for the lji:.rad
exists in the kernel space. Invoking a function in the ‘AP| for the
library, resultsin a system call to the kernel. '

" There are three main thread libraries that are used today.

. POSIX threads: POSIX stands for Portable OS Interface. The

POSIX standard for defining API, for thread Creation ang
management, is pthreads. Pthreads library defines the set of
POSIX - thread creation and management functions in (

language. Pthread may be provided as either a user level or3
kernel level library. :)

Thread Call

pfhread_create{)

Description

Creates a new thread

pthread_exit() Terminates the calling thread

pthread_join() Blocks the current thread and
waits until the completion of the

thread pointed by it.

pthread_yield() Releases the CPU to let anothef

thread run

Create ‘and initialize a threads

attributes iy et

pthread_attr._init()

Releases a thread’s attributes

Lpthr’ead_attr_destroy()

o

1132] Insights on Embedded System

. win32 threads: Win32 threads are support
of the indows OS. The win3) pp) o -
cet of win32 thread creation anq Manage

“¢hread library is a kernel leve| library,

ed

Sp
me

by Varioyg flavorg
Tovide 3 Standarg
Nt function, Win3

Thread Call Desmpth“\
createThread() Creates a new threag ,
suspendThread() Temporarily SUSPeNds threaq
execution .
ResumeThread() Wakes up a suspendeq thread
ExitThreadO It termi.nates a thread ang allocates the
; _ thread” stack resources along with
other resources that were held by it.

Java threads: Java threads are the threads supported by Java
programming language. The java thread class ‘Thread' is defined
in the package-‘java.lang’. The java thread API allows thread
creation and management directly in the java programs. Since a
java virtual machine runs on the top of host operating system,
the JAVA thread API on the top of a host 0, the JAVA thread
AP typically implemented using a thread library available on the
host system. This means that on windows system, java threads
are typically implemented using the win32 API. UNIX and LINUS
systems user pthreads.

Thread Call Description
Start() Allocates memory and initializes a new threadJ
in JAVA

Yield() A running thread enters the ready state
_gl;ep() A thread enters the suspend state

Wait() A thread enters a blocked state

Stop() Terminates a thread 2nd de-allocates
Lo B - resources

133|
Real Time Operating system |

_ud

Scanned with CamScanner

5. Difference between Thread and Process Jltitasking involves. ‘Context SWitching’

L
,fgl|e tretrleval ;

fcont o
ThTEad ProcesS - Sa\”ng and

It is a single unit of exe.cution. A process

and is a part of the process ‘execution a :js a Drogram N | Collteltfs'w-i—g'l'gg—:———-——--_._. s
Nd combingg e 1 task may exist in any one of the different stat;._i —
more threads wf fa puring the execution of an application running, ready,

etc): Program, indivi ?~
B’ - changing fr » Individual &
e continuously changing from one state to another, 5 any point of %

a b .
: scution, only one task is in running mode. During the process of stat
pU control changes from one task to.another, context o : e

‘De-

A thread shares the code, data, | A pm
Wn o R

heap 'rnemory with other threads | data and stack memg Cogy
of the same process v

o
o

- . ; . e ; i

fq thiasd cannot . live | A process contains - | Tl ; od task will be saved while context of the to-be-executed task yij

independently : thread . * Ona‘ wpet;eved. | "
e

Threads are very inexpensive to The process of saving the context of a task being susgendéd and

Processes are expensi\.@_I
0

create create. Involves many o Btorng the context of a task being resumed is called context switching.
. overhead ' KA
- - Tds
Context switching is inexpensive | Context switching is compjy| ' R
and fast . i 1 ‘L
3 _ and fnvolves lot of 05 overhey| Eeciting . . idle
. and is comparatively slower. _ o Save state into TCB,
If a thread expires, its stack is | If a process dies, the re'sources
reclaimed by the process. allocated to it are reclaimed by Reload state from TCB,
: the OS and all the associate - iy :
threads of the proéess aIsol:i:s e ' : e .
: ' Save stateinto TCBy [«
6.3 Multiprocessing and Multitasking
Multiprocessing describes the ability to execute multiple processe . Reload state from TCB,
~ simultaneously. Systems which are capable of performing multiprocessig | Executing P . : Idle’

are called multiprocessor system. Multiprocessor systems possess multip

CPUs/processors and can execute multiple processes simultaneously. The

ability of an OS to have multiple programs in memory, which are ready for
- execution, is referred as multiprogramming. ' -

. Figure 6.8: Simple context switching diagram

the current contents which
memory details, system
rocess at the time of

- Context saving' is the act of saving
Mains “the context details (register details,
®S0Urce usage details, etc. for the currently running process the saved
p SWitching. Context retrieval is the process ol remew; gdq.u‘-: to CPU
Mext details for a process which is going ' o stem does N0
MWitching, Context sv(;itch time is pure overhead becausé the sy

Usef .
3 ul Work while switching.

F— | Time Operating System 11351

In a uniprocessor system, it is not possible to execute multiple
processes simultaneously. However, it is possible for a uniprocessor syste"
to achieve some degree of pseudo parallelism in the execution -oflmultip|e
processes by switching the execution among different processes. The abillY
of an operating system to hold multiple processes in memory and switch the
processor from executing one process to another process is know" fs
multitasking. Multitasking creates the illusion of multiple tasks executifé .

|134] Insights on Embedded System G

v

Scanned with CamScanner

6.3.2.Types of Multitasking

amon' My .
ted, multigg,.
skin
8y

io

. Multitasking involves the switching of execut
tasks. 'Depending on how the switching act is implemen
be classified into different types.

n

i

1. Co-operative Multitasking: It s the most Primitive for
multitasking in which a task/process gets a chance tg e,@cu{:’]

when the currently executing task/process 'volu.ntarify relingy,
the CPU. Any task/process can N

hold the CPU as much timq
wants. If the currently executing task is non-caoperatiye’ the Y
tasks may have to wait for a long time to get the CPU.

Preemptive Multitasking: It ensures that
chance to execute. When and how muc
dependent on the implementation of the p
currently running : task/process is preem
other tasks/process to execute. The pree
. on time slots or task/process priority.

Non

t
Othy
every t'askfprocess gets,
h time a process Bets i
reemptive scheduling, The
pted to give a chang f
mption of task may be bagy

-preemptive Multitasking: In non-preemptive multjtasking, the
process/task, which is currently given the CPU time, is allowed 4
execute until it terminates or enters the ‘Blocked/Wait’ state, waiting
for an 1/0 or system resource. In co-operative multitasking, the
currently ekecuting process/task need not relinquish the CPU whenit
enters the ‘Blocked/Wait' state, whereas in non-preemptii
‘multitasking the currently executing task relinquishes the CPU when
it waits for an |/0 or system resource or an event to occur,

Task Scheduling

‘Multitasking involves the execution switching among the different
tasks. Determining which task/process is to be executed at a given point of
time is known as task/process scheduling. Scheduling policies forms the
guidelines for determining which task is to be executed when. The
scheduling policies are implemented in an algorithm and it is run by the

. 3 2 5 i > F |
kernel as a service. The process scheduling decision may take place whef
process switches its state to 6w

6.4

. Ready state from.running state

N Blocked/wait state from running state

1136] Insights on Embedded System

k E!schem'“ng algorithm can be classified as:

gy state from blocked/wait state
Re@

completed St3te

he selection of a scheduling criterion should consiger the following
T . 4 ing

xﬁ‘fkj-;

(s J u.tilization: the Scheduling criterion shoyld a
Cp-u'zatfon high. CPU utilizati
U wtage of the CPU is being utiizeq,

rc i

Iways make the Ccpy

hroughput: This gives an indication of the numb
T ocuted per unit of time. The throughput for 4
ex L s

should always be higher.

er of processas
good schedyler

Turnaf"“"d time: It is the amount of time taken by a process for
_completing its execution. It includes the time spent by the process for
waiting for the main memory, time spend in the ready queue, time
spent on completing the 1/0 operations, and the time spend in
exeéution. The turnaround time should hg a minimal for a good
scheduling algorithm.

Waiting time: it is the amount of time spent by a process in the
‘ready’ queue waiting to get the CPU time for execution. The waiting
time shoutd be minimal for a good scheduling algorithm.

Response time:. It is the time elapsed between thg submis.sion ofh a
process and the first response, for a good scheduling algorithm, the
response time should be as least as p055|ble.

S ; i ion with
The operating system maintains various queues in connectio

ing the
e CPU scheduling, and a process passes through these queues during

i i arious queues !
se of its admittance to execution completion. The v .

dintained by 0S in association with CPU scheduling are:

: 5 system.

lob queue: Job queue contains all the processes of the sy -ty fo
S ich are re

Ready queue: contains all the procgsses, ;ztI::ecution

; : ich are waiting for an
Device queue: contains the set of processes, which
/0 device.

‘Nun-Preemptive Scheduling e
% s emplo.y'ed i syste_ms_ Whlc,h Iﬂ'ﬂ:’E i
multitasking model. In this scheduling tyPe:

N
peratingSvstem 11a7|, ¢

Real Time O

s non-preemptive
rently executing I

A
Scanned with CamScanner

task/process is allowed to run until it terminates
state waiting for an 1/0 or system resources. Var
preemptive scheduling are listed below.

i.

.Or el’]terSt
10us thes E'l\l.

of r"’i

S
e

First Come First Served (FCFS)[FIFO Scheduljp
scheduling algorithm allocates CPU time to the Process

on the order in which they enter. the ready queye ?rs
entered process is serviced first. E.g. ticketing r;SEEﬁ’S
system where people need to stand to a queue and t:a“ﬂn
person standing in the queue is serviced first. iy

Last Come First Served {LCFS)/LIFO Schedul
scheduling algorithm also 'a_]ic'cates CPU time t
based: on the order in which they are enter
_queue. The last entered process is services first.

iii. Shortest Job First (SIF) Scheduling: SIF scheduling algorify
sorts the ready queue each time a process relinquishes the oy
to pick the process with shortest estimated completion time
The process with the shortest estimated run time is schedyly
first, followed by the nest shortest process, and so on.

B The

-

ii. .
INE: The L

0 the PmcESSE;
Ed in thE rEad’

iv. Priority Based Scheduling: This Scheduling algorithm ensyry
. ~ that a process with high pfi_ority is serviced at the earlig
compared to other low priority processes in the ready quew
‘The SIF algorithm can be viewed as a priority based schedulig
where each task is prioritized in the order of the time requird
"to complete the task. Another way of priority assigning §
associating a priority to the task/process at the time of creati
of the task/process. The priority is the number ranging from 0
the maximum priority supported by the OS. For windows &
operating system a priority number O indicates the hightf
_ priority.)
Preemptive Scheduling .
Preemptive scheduling is employed in systems, which irrllifh?mer‘j
preemptive multitasking model. In this scheduling, every task in e
ready queue gets a chance to execute. When and how often
process gets a chance to execute is dependent on the Wpehe
preemptive scheduling algorithm. In this scheduling methﬂd"_
; ik
scheduler can preempt (stop temporarily) the currently exec

1138| Insights on Embedded System

roceS
The

Proﬁe55 scheduling are Explaitlled below.
p!’

iii,

s and select another task from the re
task which is preempted by the schedyler is Moveq 1

.) o
eue. The okt D_f MOVINE a running progeg into a reaq i
; scheduler, without the processes request ¥ Queue by

ion. The different types of ing for it is known ag
cemption- Ypes of preemptiye Scheduling agopteq
€din

d
dy queye for EXecutign

preemptive SJF Scheduling / Shortest R
The p_ree_mptive SJF scheduling algorithm sorts the ready qu
when @ REW PIOCESs Enters the ready queve -ng ?h:cii
whether the execution time of the new proces i shorter than
s rEmaining of the fot) estimated time for the Currently
executing process. If the execution time of the ney process is
less, the-currently executing process s Preempted and the new
 process is scheduled for execution. Preemptive SIF scheduling is

A,

also known as “shortest remaining time (SRT) scheduling”.

€ Time (sRr);

Round Robin Scheduling: In this scheduling method, each
process in the ready queue is executed for a pre-defined time
slot. The execution starts with picking up the first process in the”
‘ready queue. It is executed for a pre-defined time slice and
when the pre-defined time elapses or the process completes
before the pre-defined time slice, the next process in the ready
queue is selected for execution. Once each process in the ready
queue is executed for the pre-defined time period, the
scheduler picks the first process in the ready queue again for
execution and the sequence is repeated. So, the round rol?in
scheduling is similar to the FCFS scheduling but time slice
preemption is added to switch the exe;ution between the
processes in the ready queue. -

. : eemptive scheduling
Priority Based Scheduling: Priority based preemptve 8L 7
-preemptive priority base
algorithm is same as that of the non-p tion between
scheduling except for the switching ot ?xﬁwrior‘tt\? process
processes. In preemptive scheduling anY h]gl pg;chedulrscl for
entering the ready queue is imme.diatev duling any high
execution whereas in the non-preemptve SL::les.:hedulf-:d only
Priority process entering the redY queu:etes its execution of
after the currently executing processt ;OFEIF:U
I e CPU.
only when it voluntarily relinquishes

e ————

me Operating Sy

R 7

stem 11391

!

A

A

Y
il

£

Scanned with CamScanner

: rime-shared or multi-processing s

. 6.5 Task Synchronization
ecution order cannot be predicteg
e .

In a multitasking environment, multiple processes ryn oo

ste I
ystem the exact instructiop,

Cury
and share the system resources. When two processes try to access dfeﬂt}, Scenario 1 ,
: d to the system or.two proce e e]
hardware connecte : y ‘ p. Sses try to access 3 shy By A1: Loa d Ra, Count i
memory area where one process tries to write to a memory location Ty . : - Load Ra, Coynt
the other process is trying to read from this. Then, an issde will arig Whig A2: Add Ra, 05 A2: Add R, 05
hence each process must be made aware of the, access of the = A3: Store Count, Ra Context Swi
resources. The act of making processes aware of the access of the Shargg coutaxt Switih ; Witch
resources by each process to avoid conflicts is known as task Shal’w - 1 Load Rb, Count
gy e T ~ /prchSs B1: Load Rb, Count . B2: Add
ynchronization. Various synchronization issues may, arise if Processe .d foat s Rb, 10
not synchronized properly. ' a B2: Add Rb, B3: Store Coun
- b t, Rb
L) : g3: Store Count, Rb.- - Con .

6.5.1. Task Communication/Synchronization Issues ; : tm. Tk

. : : — A3: Store Count, R
1. Racing , , --""t— eased by 15 - -

, R " | © Countis incr - Countisin
Racing or race condition is the situation in which multiple Procesg L — : creased by 5 |
compete each other to access and manipulate shareq i B & Deadlock

A race condition produces incorrect results whereas a deadlock
condition creates a situation where none of the prbcesses are able to
make any progress in their execution, resultin_g in a set of deadlocked
processes. In its simplest form, ‘deadlock’ is the condition in which a

concurrently. In a race condition the final.value of the shared daty
depends on the process which acted on the data finally. |

Suppose that two processes A and B have access to a shared variable

Count: :
process is:-waiting for a resource held by another process which is

waiting for a resou rce held by the first process. For instance, process
‘A holds a resource x and it wants a resource y held by process B.
Process B is currently holding resource y and it wants the resources x
which is currently held by process A. None of the competing process
will be able to access the resources held by other processes since

they are locked by the respective processes.

Process A: Count = Count +5
Process B: Count = Count + 10

Assume that process A and process B are executing concurrently in
time-shared, multi-programmed system.

Each statement requires several machine level instructions such as
For Count = Count +5 |

Al: Load Ra, Count

A2: Add Ra, 05

AB: Store Count,- Ra

For. Count = Count + 10

Process A

Resource X

Wait

ading t0 deadlock

"B1: Load Rb, Count .
B2: Add Rb, 10 '
B3: Store Count, Rb

-Figure 6.9: Scenarios le
I em [141]

me Operating 5! y
Scanned with CamScanner

11401 Insights on Embedded Svstem . paal Ti

Coffman Conditions:
deadlock situation are [j

The different conditig
sted below:

Mutual exclusion: The criteria that only Ohe
hold a resource at a time. Processes should 3
resources with mutual exclusion,

Hold and wait: The condition i
shared resource by acquiring

shared access and waiting for ad
other processes.

ns fa\f .
Or

1ng :
prOCeSS

¥
CC&SS Shar::

n which a Proces

S hg
the lock con ‘

53
e olling t
ditional resources heidhy

No resource preemptive: The ‘criteria
.systen'n cannot take back a resource from 3 Process Whi,
IS currently holding it and the resource can op), be
released voluntarily by the process holding it.

that operg

Circular wait: A process is waiting for a reso
currently held by another process which in t
for a resource held by the first process. In general, ther
exists a set of waiting process PO, P1 .. P with Pg i

waiting for a resource held by P1 and P1 is waiting.fo;a

resource held by PO, .., Pn is waiting for a Iresourcla held by

PO and PO is waiting for a resource held by Pn and so on,
This forms a circular wait queue.

ii. Deadlock.Handling

urce which j,
urn-is Waiting

A smart OS may foresee the deadlock condition and will act
" proactively to avoid such a situation. The 0OS may adopt any of

the following techniques to detect and prevent deadlock
“conditions. '

- ® lIgnore deadlocks: Always assume that the system designis
- deadlock free. This is acceptable for the reason the cost of

removing a deadlock is large compared to the chance of
. deadlock to occur.

Detect and recover: This approach suggests the detectio”
of a deadlock situation and recovery from it. OS keeps .a
resource graph in their memory. The resource graph ¥
updated on each resource request and release. A deadlock
condition can be detected by analyzing the resource Efap‘h
by gragh analyzer algorithms. Once a deadlock conditio")

1142 Insights on Embedded System

4 . 3 i i g
-wgnchron}ﬂgmm

__..---""\

detected, the system can termi

Nate a pr
the resource to break the dead|,

oces
ocking tycle,
Avoid deadlocks: Deadlock js

i Avoided by the
resource allocation technigues by the Operating mtcarefm
' em,

Sor Preempt

prevent deadlocks: Preyent 4,
negating one of the four congig;
! situation. ~

e deadlock condition by
ons favoring the deadlock

o Ensure that a process does not

o hold any other
resources when it requires a resource,

o Ensure resources preemption,

.LivéIOCk :

Ina livelock condition, a process changes its state with time bt i
snable to make any progress in the execution completion, While in-
déad|otk.3 process enters a wait state for a response and contines _
in that state forever without making any progress in the execution.
for example, two people attempting to cross each other in a narrow
corridor. Both the person moves towards each side of the corridor to
allow the opposite person to cross. Since the corridor is narrow, none
of them are able to cross each “other. Here both of the persons

perform some action but still they are unable to achieve their target.

. Starvation -

In the mivttitasking context, starvation is the cont‘!ition. in whtc:: :,
process does not get the resources required to continue its exe;}'-: :e'
for a long time. As time progresses the prot{e_ss sta_rvesbﬂﬂ :::duct -
Starvation may arise due to various conditions .h?ce f:i’oﬁng K
‘preventive measures of deadlock, scheduling policies

. 3 i t|mEI Etc‘
Priority tasks and tasks with shortest execution

Task synchronization is essential for: in. a multitasking
Avoiding conflicts in resource 3ccess

environment.) acr05§ processes:
Ensuring proper sequence of operation :

" psses.
Communicating between proc :

g System wal

tin .
2al Time Operd)
i Scanned with CamS

- -‘%" .

'
canner

The code memory area which !wlds 'the Program insty
accessing a shared resource, shared variables is known as Critica
order to synchronize the access to shared resources, the -
critical section should be exclusive.

UCtia

i
| sectig, |

On‘l
Cesg to

A

§
Consider two processes Process A and Process B Funnin

multitasking system. Process A is currently running and it enter
section. Before Process A completes its operation in the Critical
scheduler preempts process A and schedules Process B fo
Process B also contains the access to the critical section which
use by Process A. if process B continues its execution and enter
section which is already in use by Process A, 2 racing cond

resulted. A mutual exclusion policy. enforces mu
critical sections: '

oS
S |tS Criti{
Sectigy, 1
is BFI“Ead i
S the Crilicq
ition iy

tually exclusive access

1. Mutual Exclusion through Busy Waiting/Spin Lock
The Busy Waiting technique uses a lock variable for
mutual exclusion. Each process/ thread checks this

before entering the critical section. The lock is se

process/thread if the process/thread is alread
_otherwise the lock is set to 0,

implementing
lock Variabjg
tto 1 by,
y in its critical section;

The-lock based mutual 'exclusion implementation 'alwavs checks the
state of a lock and waits till the lock is available.i This keeps the:
processes always busy and forces the processes to wait for the
availability of the lock for proceeding further. Hence this:
synchronization mechanism is known as Busy Waiting. This method s’
useful in handling scenarios where the processes are likely to be
blocked for a shorter period of time on waiting the lock, as they avoid.
OS overheads on context saving and process re-scheduling. The
drawback of Spin Lock based svncﬁronizati_on is that if the lock &
being held for a long time by a process and if it is preempted by the .
. 0S, the other threads waiting for this lock may have to spin a longe',
time for getting it. The busy waiting mechanism keeps the proces
always active, performing a task which is not useful and leads to the
wastage of prdcessdr time and high power consumption.

2. Mutual Exclusion through Sleep & Wakeup

The Busy waiting mutual exclusion enforcement mechanism used P/
: ; e
Pprocesses makes the CPU always busy by checking the lock to S¢

1144] Insights on Embedded System

ther they can proceed. This regeg ;- the wag
h eads 10 high power consumption, This is
d ded systems powered on py

mbed - tery. In g
2 chanism, when a process i not alloweg 0 acce
metioﬂ which is currently- being |ocyaq by
seCHEY

ocess undergoes Sleep and enters the blockeg state, The .
ee . ; - rocE
¥ oich is. blocked on waiting for accg to the critjcy) Section 5
: is

yakened by the process _whlch currently owns the Critical sectjgn
:'he process which-owns the critical section senc '

. e PrOCESS, which is ;leaping‘ as a resuylt g
_tf; the critical section, when the process |e3
o dep an_d wakeup mechanism for mytyal exclusion can pe
implemented in different \A‘.rays. We will discuss one method of sleep

. and wakeup mechanism using Semaphore,

and Wakeyp
SS the Critical
another Process, the

nds a Wakeup Message
f waliting for the access
ves the critical section,

semaphore- is a sleep and wakeup based mutyal exclusion
1mplefnentati0n for shared resource access. Semaphore js 3 system
resource and the process which wants to access the share resource
can first acquire this system object tq indicate the other processes
which wants the shared resource that the shared resource is
curreht!\; acquired by it. The resources which are shared among a
process can be either for exclusive use by a process or for using by a
number of processes in a time. The display device of an embedded
system is a typical example for the shared resource :.vhich n_eads
exclusive access by a process: The hard disk of a system is a WP}EFﬂ
- example for sharing the resource among a limited number of multiple

) ized into two
processes.. So, basically, semaphore can be categorized in
types. . .~

- ; ; ides
oy g . ; semaphore provi
' Binary Semaphore {l_\nutex]. The blrery ting the resource to
exclusive access to shared resource by al!oca ' gother processes
.2 single-process at a time and not allowing th:,cess Mutex is 3
to access it w-hen_it‘ is being owned bz g 9:35 for process
- Synchronization object provided tY a mutex object and
synchronization, Any process can ¢rea IE;1115 mutex object at 3
other processes of the system can use naled when it is not
time. The state of a mutex object is set 0 SET dwhenitis owned
. _signale
Owned by any process, and set to fon a

b .
T .ating System lﬁﬂ .

>Yany process.

e

Scanned with CamScanner

ii. Counting Semaphore: The counting semaph_ore limit the

of resources to fixed number of processes or thre:tce35
maintains a count between zero and a value. |t limits the S
“of the resource to the maximum value of the count Supp Sag,
by it. The state of the counting semaphore object Is °
signaled when the count of the object is greater th
count associated with a semaphore object is de(:
one when a process acquires it and the count isin
one when a process releases the semaphore obje
the semaphore object is set to non
semaphore is acquired by the maxiﬁwum
that the semaphore can support. .

N zerq,
T®Mentey E
crem_emeDI

. Ct. The Statg o
-Signaled When

th
number of Proge ;

55@5

6.6 Device Drivers

Itis a piece of software that acts as a brid

) | ge between the 05 and the
hardware. The architecture of OS kernel will

now allow direct device acces
from the user application. All devices related access should flow through gg
kernel and the OS kernel routes it to the concerned hardware

peripherals,
Device drivers

are responsible for initiating and managing the
communication with hardware peripherals.

establishing connectivity, “initializing ha_rdwalj
registers) and transferring data.

They are responsible fy
e (setting up various cp

Device drives which are part of OS are called built in drivers or on-
board drivers. These drivers are loaded by OS at the.time of booting the
device and are kept in RAM. Device drivers which need to be installed for
accessing a device are called installable drivers, Whenever the device i
conneéted, the OS loads the corresponding driver into memory. Driver files
are usually in the form of “.dIl’ files. Drivers can run either in user space ofit
kernel space. Device drivers which run in user space are called user mod
driver and the driver which run in kernel space are called kernel modt

drivers. '

A device driver implements the following:

i. Device initialization and interrupt configuration:
. ¢
' The driver configures the different registers of the device. Tha{
interrupt configuration part deals with configuring the interrupts th

needs to be associated with the hardware. The basic interrf
configuration involves:

_——-"/

1146 Insights on Embedded System

set the interrupt type (Edge triggered of Level tr;
s i i interrunt iy "188ered), engy,
; gind the interfupt with ap inter
r0cessor identifies an interrupt thr
generated by the Interrupt Contrg,
interrupt the interrupt needs to be

rUpt {quuest “
Ough IRQ, Thege
€T In order tg jge

bonded to an IRQ.
Register an Interrupt Service Routine

handler for an interrupt. In order to
should be associated with an |rQ,

RQ), The
IRQs are
ntify and

(ISR) with an IRq, 153, the
service an interrupt, an ISR

jnterrupt handling and processing;
An interrupt is served based on its priority, and the éorreSpanding ISR
is invoked. The processing part of an interrupt is handled in an (SR,

The whole interrupt processing can be done by the ISR tself of by

 invoking an Interrupt Service Thread (IST). The IST performs interrupt

processing on behalf of the ISR. Since interrupt processing happens at

kernel level, user application may not have direct access to the
drivers to pass and receive data.

Client interfacing:

The client interfacing implementation makes use of the interprocess
communication mechanisms supported by the embedded 05 for
communicating and synchronizing with user applications apd drivers.
For examplé, to inform a user application that an interrupt is
occurred and the data received from the device is placed in a_shafed
buffer, the client interfacing code can signal an event.

“SOLUTION TO IMPORTANT QUESTIONS

blem 1; i

Three Processes with process IDs P1, P2, P?: \.vith p:on::se:;:;;
and estimated .completion time 10, 5, 7 mlmsim:z spra. zalculate
enter the ready queue together in the order P ;, r::cess and also
the Waiting Time and Turn Around Time for :E:;u:d g, Assie
the Average Waiting Time and Average T"rz o the following non"
there s no 1/0 waiting for the process. Us _

Preemptive scheduling algorithms:

' 147|
ime Operating Syste™ |
Rea

Scanned with CamScanner

® First Come First Serve Scheduling \ 5||al‘t"-'5t ob First
e Priority Based Scheduling 7 ﬂ P1 Waiting Time
: ﬂ 12 2
5

¢ Shortest Job First Scheduling = Execution sy3 p0 -
: 0 ecution sequence of Processes Tu("’ Aound Time < PO
Solution: \ e ftaiin: i P'“"”‘ ~Entry oy
caic urn Around Tj
Given information from the question are ta ting TIMe€ Ime cal
3 bulated a5 shown by, wai (0-0)=0ms P2=(5-0)=5m; iy
Process Entry Time Completion Time Pnomy Eme :g ; (5- 0) = 5ms P3=(12-0)= 12ms
P1 0 : 10 2 ,.r""'l p = (12-0) = 12ms P1=(22-0) = 20ms
P2 0 5 LR |aer age waiting Time — Average Turn Around Time
3 R =(0+5+12)/3 " =(5+12+22)/3
P3 0 7 0 Y =5.67ms =13ms
: . . . e
A. First Come First Served Scheduling '
—F; Memz :
‘ P1 l P2 l P3 j Waiting Time Three pr ocesses with process IDs P1, P2, P3 with priarities 0, 1,3
0 10 15 2 ;DEIJ:cutlon Start Point - Enty and estimated completion time 6, 9, 3 milliseconds respectively

Execution Seque_nce of Processes . Turn Afound Time

enter the ready queue together. If a new process P4 (priority 2)
=Completion Point - Entry Paint

with estimated completion time 2ms enters the ready queue after

Waiting Time calculation 3ms of execution of P1. Calculate the Waiting Time and Turn arcund

Turn Around Time calculation

s AR LT Time for each process and also the Average Waiting Time and
Eg - {(igg; _ igms E; 3 :15-0; =1 Average Turn Around Time. Make use of following non-preemptive
=(15-0) = 15ms = (22-0) = 22ms)
st ; i blem.
Average Waiting Time Average Turn Around Time scheduling algorithm to solve the prf: em
= (0+10+15)/3 = (10 + 15+ 22)/3 ¢ Shortest Job First (SJF) Scheduling
=8.33ms =15.67ms * Priority Based Scheduling

olution:
B. Priority Based Scheduling /

Non - Preemptwe S]F Scheduling

N 5 P2 | WaitingTime _ Given information from the questu:::M‘"’_ﬂ_‘_‘lm'}W
0 7 TR ol Process | EntryTime | Completion Time | Priority
Execution Sequence of Processes * Tyrn Around Time ' ‘ 0 |
= Completion Point - Entry PO P1 0 _____—6——————'%"’__'"1
' P2 0 __,L-———r—-x—-“
Waiting Time calculation Turn Around Time calculation "T—— 3 3
=(0-0)=0ms P3=(7-0)=7ms L3 | 0 ___./”1"144
P1=(7-0)=7ms P1=(17-0)=17ms P4 | 3ms after P1 starts | e
P2=(17-0)=17ms P2 =(22-0)=22ms S i '
Average Waiting Time Average Turn Around Time
=(0+7+17)/3 =(7+17 +22)/3 ;
= 8ms £ 15.33ms'_’// ol
;] _// 0 eratiﬂE Svlem
. |148] Insights on Embedded System Tt

1
Scanned with CamScanner

15.17 20
Executlon Sequence of Processes

Waiting Time = {Execution Starting Point —- Entry p

; i Y Foin
Turn Around Time = (Completion Point — Entry p, l

Oint]

Waiting Time calculation Turn Around Time cal

C .
P1=(0-0)=0ms P1=(6-0)=6 "t
p2=(6-0) = 6ms P2=(15-0) = 15ms
P4 = (15 - 3) = 12ms P4=(17-3) = 14ms
P3=(17-0)=17ms - P3=(20-0)=20ms
Average Waiting Time Average Turn Aroung Time

=(0+6+12+17)/4 =(6+15+144 59,
=8.75ms =13.75ms

Explanation: Entry point for three processes P1, P2 and P3 js Same
Oms but the process P4 enters only after 3ms of execution of PLy
the entry point for P4 will be at 6ms. Regardless of the shortey
completion time of P4, P4 will not halt the execution of P1 a1y,
algorithm is non pre=émptive. However, after the execution af B,
there remain two processes P2 and P4 with completion time 9msad
2ms respectively. Hénce, P4 will start to execute after completiond
P1 according to shortestjob first scheduling.-l

Non - Preemptive Priority Based Scheduling
Given informatian from the question are tabulated as shown below

Process Entry Time Complefcion Time | Priority
P1 0 6 0
P2 0 9 1
P3 0 3 3
P4 3ms after P1 starts 2 2

*1150| Insights on Embedded Svstem

‘problem 3:

0 3 6
Execution Sequence

15 17 3
of Processes
waiting Time = (Execution Startip,

g Point -
Turn Around Time = (Completjo ntry Point)

n Point - = Entry Poin)
Waiting Time calculation
p1=(0 ~0)=0ms
p2={6-0) =6ms

P4 = (15 - 3) =12ms
p3=(17-0)=17ms

Turn Aroung Time
P1={6-0)=6ms

P2=(15-0) = 15m;
PA=(17-3) = 14ms
P3=(20-0)= 20ms

calculation

Auérase Waiting Time _Average Turn Around Time
=(0+6+12+17)/4 =(6+15+14+20)/4
| =8.75ms =13.75ms

Three processes P1, P2, P3 with estimated completion time 9, 4. §
ms and priorities 1, 3, 2 respectively enters the ready queue
together. A- new process P4 with estimated completion time 4ms
and priority 0 enters the ready queue after 2 ms of start of
execution of P1. Calculate the Waiting Time and Turn Around Time .
for each process. -Also Calculate the Average Waiting Time and
Average Turn Around Time, using the Preemptive Shurtest]nt_: First
Scheduling and Priority Based Scheduling.

Process EntryTime | Completion Time | Priority
et
- 1
P1 " -0 ______3__,_— :
3
P2 0 . S T
— 2
L IR T SE S
0
: L‘PL 2ms after P1 starts _____f___._-L——-—'-‘
| 2ms after P1 start> |

Solution:
A

Preemptive SJF Scheduling ‘
Given information from the question are tabulated as shown below.

' , ting System 1151|

Real Time Qpera

Scanned with CamScanner

10 - 12 16 23
Execution Sequence of Pracesses

Waiting Time = (Execution Starting Point — Entry Péint) +H
Turn Around Time = (Completion Point — Entry pPoj
Waiting Time calculation
P2=(0-0)=0ms
P3=(4-0)=4ms
P4=(12-12) = oms
P1=(10-0) + (16 - 12) = 14ms
Average Waiting Time

altaq 4:

) U timg
Turn Around Time. "~
calculation ;
P2=(4-0)=4ms
P3=(10-0) = 10ms

. P4=(16-12) = amg
P1=(23-0)=23ms

-=(0+4+0+ 14)/4 Average Turn Around Time
=4.5ms =(4+10+444 23y,
=10.25ms

Explanation: Entry point for three processes P1, P2 m
Oms bqt the process P4 enters only after 2ms of execution of P1 g,
the entry point for P4 will- be at 12ms. At 12ms, there are two
processes remaining; P1 with 7ms left to execute and P4 with 4y
Since P4 is shorter corﬁpared to remaining part of P1, P4 will halt the
execution of P1 at 12ms and starts its own execution. After p4
completes its execution at 16ms, P1 resumes:

Preemptive Priority Based Scheduling |
Given information from the question are tabulated as shown below

0o 2 6 13

: 19 23
‘ Execution Sequence of Processes
g s tion Starting pojnt
. Time = (Execu g Point Entry poj
U‘-’a'tmgTurn Around Time = (Completion, Point - Enltr::r};oﬁ;w e
. din
. calculation Turn A ime ¢
iting Time - round Time caleypags
W 0-0)+ (6-2) = 4ms Py
oy =(2-2)=0ms P4=(6-2) = 4
p3=(13-0) = 13ms P3=(19-0)= 19m
| 5= (19-0) = 19ms o= (23-0)= 73
Waiting Time Average Turn 4 i
ol _ round Time
=(4+0+13+19)/4 =(13+4+19+23]!4
-9ms =14.75ms
L—
i aaae— SN

b[em 4: .

gxplain process life cycle with process state diagram. Three
processes With process IDs P1, P2, P3 with estimated completion
time 8, 6, 10ns and priorities 0, 3, 2 (0-highest priority and 3- lowest
priority) respectively, enters a ready Queue together in order P1, P2,
P3 (assume P1 is present in the ready queue when scheduler picks it
up and P2 and P3 enter the queue after that). Now the process p4
with estimated completion time 6ms and priority 1 enters the ready
queue after 5Sms of execution of P1. Calculate waiting time and TA-T
for each process and average waiting time and TAT. Assume there is

no /O waiting for the processes and priority-based scheduling.
. ' [2076 Bhadra]

Process Entry Time Completion Time Priority
P1 0 -9 1
p2. 0 4 3
‘ P3 0 6 2
P4 2ms after P1 4 0
starts]
i

1152 Insights on Embedded System

lution;

. ' v low:
Given information from the question are tabulated as shown be

Entry Time

Execution Sequence of

Processes

- 3
— oerating SysteM 11531
Scanned with CamScanner

Waiting Time = (Execution Starting Point — Entry p

Qint
~ Turn Around Time = (Completion Point — Entry Paint !

Waiting Time calculation ¢
P1=(0-0) = Oms

P2 = (24-0) = 24ms

P3 = (14-0) = 14ms ‘

P4 =(8-5) = 3ms
‘Average Waiting Time = (0 + 24 + 14 + 3)/4

. =10.25ms

Turn Around Time calculation
P1=(8-0}=8ms

P2 = (30 - 0) = 30ms

P3 = (24- 0) = 24ms

P4=(1_4_-5)=9ms -

Average Turn Around Time= (8 + 30 +.24 + 9)/4

: " =17.75ms

Problem 5:

" - scheduler picks it up and P2 and P3 enter the queue after thatl

Three processes. with process IDs P1, P2, P3 with estimate
completion time 7, 8, 5 ms and priorities 0, 3, 2 (0-highest priorhy
and 3- lowest priority) respectively, enters a ready queue together
in order P1, P2, P3 (assume P1 is.present in the ready queue wher

priority 1 enters the ready queue_hfter 5ms of execution of P! .
Calculate waiting time and TAT for each process and averdgt

Solution:

' v v
Given information from the question are tabulated as shown belo

1154] Insights on Embedded System

¥

Execution Sequence of Procgsses

waiting Time = (Execution Sta_”fng Point ~ Entry poingy
umn Around Time =i(CompJetion Point - Entry Point
Waiting Time calculation

p1=(0-0)=0ms

p2=(22-0) = 22ms

p3=(17-0) = 17ms

Ip4.-: (7- 5)=2ms .

Average Waiting Time = (0 +22 + 17+ 2)/4
= 10.25ms

Turn Around Time calculation .

PL=(7-0)=7ms -
P2=(30- 0) = 30ms

P3=(22-0) = 22ms
P4 =(17-5).= 12ms

~ Average Turn Around Times= (7 + 30 + 22 + 12)/4

=17.75ms

Three processes with process IDs P, P2, P3 with :stim::::
“mpletion time 5, 8, 7 ms respectively, ent—?r o ;e;r:a‘:ound
“ogether in order P1, P2, P3. Calculate waiting Hme aﬂand average
time for each process and average Waiting g

ik time slice 2mS-
Wrnaroung time using Round Robin algorithm with ti

[2075 Bh adra)

' 5
: erating Syste™ =

naal Time OP

Scanned with CamScanner

Solution;

F1|pz|psfp1[pz|P3|-P1]

0 -

2 4 6 8 10, 12

Turn Around Time Calculation

P1=13-0=13ms '

P2=19-0=19ms 2

P3 =20-0 = 20ms

Average Turn Around Time = (13 + 19 + 20)/3
=17.33ms

Waiting Time Calculation

(Waiting Time = Turn Around Time - Completion Tj

P1=13-5=8ms
P2=19-8=11ms
P3=20-7=13ms

Average Waiting Time=(8'+11 +'13]/3 '

=10.66ms

P2

3

me)

Problem 7: ’
Three processes: with process IDs P1, P2, P3 with estimated
completion time I;?, 8, 2ms respectively enters the ready quew
together in the order P1, P2, P3. Process P4 with the estimated time
4ms enters the ready queue after 1ms after the start of executionof
P1. Calculate the waiting time and TAT for each process and tht
average waiting time and TAT in non-preemptive Shortest Job Firs

[2075 Baishaki]
IS

Scheduling.
Solution: _) _
Process Entry Time Completion | - A '

g L .p3] ip1 [pal . P2 [o
x 2 : 0 213 8 I 3
P2 0 8 . s
ra 0 2 Execution Sequence of Process®
P4 1ms after P1 starts 4

Waiting Time = (Execution Starting Point — Entry Point)
Turn Around Time = (Completion Point — Entry Paint)

1156 Insights on Embedded System

_/

olution: .
Given information from the question are tabulated as shown below

aitin
W; _(0- 0)= 0oms

_(2-0)=2ms

1
llj4 =(8- 3)=oms
027 (12 ~ 0) =12ms
A\:eﬁ'ag

=4.75ms

g Time Calculation

e WT=(0+2+5+12)/4

.":.;e processes With process ID py, P2, p3
completion time 4, 10, Sms and priorities 1,3, 1,
the ready queue together. A new process pg
completion time 3ms and priority 0 enters the re
sms of start of operation. Calculate WT, TAT for
calculate AWT and ATAT using preemptiv

Tu m Arou nd Ti

Ime Caleylay:
P3=(2. 0) = 2mg ation

P1=(8-(])=8ms

P4 = (12-3}=9ms

P2=(20-0)= 20ms

Average TAT = 248494 20)/4 |
=9,75ms

with estimated
spectively enters
With estimated
ady queue after
each process and-
e priority-based
[2074 Bhadra)

scheduling algorithms.

R

P1=(4-0) =ams
P2 = (22-0) = 22ms
P3=(12-0) = 12ms
P4=(8-5) = 3ms

=10.25ms

\‘

Average Turn Around Time
=(4+22+12+3)/4

Process Entry Time Completion Priority
. Time
P1. 0 4 1
P2 0 10 3
P3 ; 0 : 2
P4 | Sms after start of operation 0
p: T »
0. 45 8 1 2
Execution Sequence of Processes
i ion
Turn Around Time calculation ~ Waiting Time calculat

P1=(0-0)=0ms

PZ - tlz k 0)=12ms

P3-: (4_ 0) + [3_5} =7ms

P4 = (5-5) =0ms

Average Waiting Time
,-_{0+12+7+0V4

. =4.75ms

I i m 1571
Real Time Operatmg_s_yste

Scanned with CamScanner

CONTROL SYSTEMS

° Introductibn _ . _

. Open-Loop and Closed-Loop Control Systems O\ref\riew
. _General Control Systems and PID Controllers

. Software Coding of PID Controller

. PID Tuning s

. Practical Issues Related to Computer-Based Contro|

. Benefits of Computer-Based Control Implementaticn
7.1 Introduction

. .Control systems, a class of embédded systems, focus on tracking the
reference input that is providedto the system. Initially the reference inputi

* set and the output is more likely to track the same input regardless of the
different external fat;tors involved. The tracking can get- difficult wit the
presence of disturbances. However, the system must be able to adjust tg
external factors for optimum performance. The objective of a control

- system is to track the reference output. The following figures represent
good tra_ckin_g and bad tracking respectively.

A . g b r'y i
: [N o
T Rel H - A .
g erence Input IR i
§i ____________ 1 N
o ¥ System Output i Yo
k] i e
£~
£y b !
]
“é. ________ 4 R,
........
|- -
P
Time

Figure 7.1: Good tracking and bad tracking

7.2 Open-Loop and Closed-Loop Control Systems Overvie¥

7.2.1 Open-Loop Control Systems

I

— e
Open-loop control systems are those systems in which the OUtpUtdha
no influence on the control action of the input signal. It is also refef®

- ; f
feed-forward system or non-feedback systém since the output IS not
back for comparison with the reference input. Also the controllef

11581 Inciohte An Embhaddad Comina

-

js no

1

" outto control. Speed, temperature can be take
El

Reference Input

22 Closed-Loop Control Systems -

Pinciple. In_ such system the output is fe
Ir:ference inbUt and error signal is F"Od“‘ed'
" Signal and reduces the error to obtain ¢

.':Ontrouer is aware about the output variations,

]

e

¢ the tracking of reference inpy, <, 0

¢ are best utilized in case of predic
¢ o disturbance effect is minimg).
oS consist of following:

Plimizatiop, is not Possib|
table Systems wiy .

05¢ mogg|
In Beneral, the open-logp

i ¥
&,

&£

which s also referred as a process, is the '

. physical
Automobiles, fan, heater, disk etc. are feuy ex::tt;m tobe
; ples.

plaﬂ‘r
ontrolled

OutPut is the aspect or attribute of the Physical System that we
are

135 examples,
Rojeren®® P A d?SiTEdlvalue that is required to pe obseﬁred
45 an output of the physical system. Desired speeg, temperature set
py the user represents a reference input,

actuat or is the device that is used to control the input to the plant.
Mofof can be taken as an example of an actuator.

contrﬁlle_r i_s the main processing part of the system which computes
the input to the plant such that desired output is achievgd'based on
gi\.;en reference input. - ;
pisturbance is an undesirable input to the system that may cause the
' output to deviate from the desired reference input.

The general block diagram of open-loop control system is shown in
the figure below. . :)

Disturbances

a3

Figure 7.2: Block diagram of an open-loop €0

Controller

ntrol system

i dback
tems operating on fee
s d with the

d back, comparé

The controller proce.sses t:z
he desired output. Smcz -
optimization can be

r. Apart i
inimizing the &
m‘r“m disturbancest

Closed-l'oop control systems are th

OPtimum performance. can be obtained bY

_ uator, 2n
M the plant, output, reference, controller, aCtZEE

~ control systems (281

o A
Scanned with CamScanner

.closed-loop control system contains additional Compﬂnents as sep
50
error detector. © . Y

. Sensor is used to sense the output of the system and is foq
input where error is calculated. : toy
. Error detector determines the error being produced in the
s
Error is calculated by determining the dlfference between the Yste
of the system and the reference input. ¢

The general block dlagram of closed-loop control s

ystem js ¢ :)
the figure below. : howp n

Disturbances

Reference Input Error

Controller Actuator

w

Figure 7.3: Block diagram of cluseii-lonp control system

7.2.3 Comparison of Open-

Loop and Closed Loop Contrg
Systems | .

SN Open-Loop Control System Closed-Loop Control System

Feed Back System: Output is fed
.|back and compared with input.

1. |Feed Forward System: Output is
* |not fed back.

2. [Itis simple and economical. It is complex and expensive.

3. |Good calibration can lead to good

accuracy but optimization is not
possible

Feedback principle reduces e,
increases accuracy and supports
optimization

4. (It is slow and unreliable but|lt is fast and more reliable bu
stable. ' ; unstable,

7.2.4 Open and Closed Loop Control System Design Example

Design of an Open-Loop Autoniobile Cruise Controller

o
The following steps should be considered while des;gnlng an ope
loop control system:

s Develop amodel of the plant

* Develop a controller

11601 Insichtc nn Fmhaddad Cuctam

m,wgdm T

analyze the controller

consider disturbance

Dete'i’""ine performance

an openloop automoble cruise controjgy
7 halow: diagrarm wj
wn bele

Actualor

D sturd iy
u, (throttle) u

1 lrond

Lqr Tanbe|

Contra] g
| = Tus,
=Py

Plant (Auwtomobile

System nicdel
Ve =0 Ty 4l Wy,

Flglll“e 7.4: Block d:agram of upen-loop automobile crujse controller

“Model of a plant

|t describes how the plant reacts to the input and current state, Here
the speed of the plant is changed based on reference desired input

and throttle position. The modeling of a plant can be done by °

experiment and observations.

Let us assume a model which is valid for d:fferent combination of

values of speed (v} and throttle position (u;). And the model is
represented as:

Vi = 0.7 x Vit 05 X Uy '
Developing a controller

Let us assume that the equation for controller wlll be:

W= F{T‘] =P % r't- 5
nstant, Uy 15

; 1 ') : 0
Where r, is the desired speed, P is the proportional ¢
Input to actuator :

Then, ’

“t*1“07’<‘-“t+05xut— RS at all, then WE
tion at all
At steady state, let us assume there is N g '

Wevy =y = Vis. So, we get

Ya=07 x v 40, 5P x

\ 0 S -

7.5

Scanned with CamScanner

At steady state, we want steady state output and .—efermce i

be equal i.e., V5= T
P=03/0.5=0.6
Hence, we have a simple proportlona'. controller model i e, |

Dutl‘]

Mt t={-\'-E)‘
3. Analyzing the controller - .
Let vo=20 mph, ro= 50 mph y
V:+1—07Vt+05l06)Krt—U7Vr+03xSO-07vt+ 15 ... i
 Throttle position is 0.6x50 = 30 degree. So solving the equatiop Hh.
speed of car for various time are shown in Table 7.1(a).. 8
4. Considering disturbance

Since, road grade can affect the speed, so considefing'the ran
 road grade from —5 mph to +5 mph. The equatlon wiil be as g
below:

Vi1 = 0.7v+0.5P %

~wo_...{i)

be:
Vi1 = 0..7Vt+ 10
Vi1 = 0.7v¢+ 20

Table 7.1: Open loop. cruise controller response when disturbances

a)0b)+5andc)-5

Be of
h(}w"

So substitutihg value of wy 5_5_and -5 on equation (ii). The valye wiﬁ

P erformance
rm"‘llng p
pet®
for 0€¢
o 0.7Vt+ O-SP X ru_ WD
it 4
Lett® gy then

0.5P X fo—

ermining the performance, e have

.o?Vo“"
ett—“hen’

.0.7(0. 7vg+ 0.5P X o= Wq) + 0.5p x K
={0_7)},{,+(07f10)x059grg_

Wo

07+10 W,

gimilarly,

o {07]‘v0+(ﬂ7 140724, +o7+10)(u5px,u ~w)

Here the rate of decay is given by the coefficient of e, a=07
= 0.7v + 05 % Fo -

In Vi Wo, CGeffICIent of Vi

decay of V. SQ:

determines rate of

o Ifa>1ora<-1, v will grow without bound as time increases

e Ifa<0,v: will oscillate.

Design of a Closed-Loop Automobile Cruise Controller

The speed of the automobile cruise controller in open loop control
system may be degraded due to presence of various disturbances like grade
of road resulting friction or direction of wind. So, to reduce the error in
speed due to disturba nce, the closed loop controller may be beneficial as it
includes the speed sensor which detects the output speed and based on this

Time (t v, = I =-
0 ® 20 tOO Lt f::]\.;{] +5_ % f:;";o' 5 Value, the error detector detects the error so that the error in speed can be
. — : : detect automobile is as
1 29.00 34.00 24.00 - ed and corrected. The block diagram for closed loop
2 35.30 43.80 26.80 nin Flgure 7.5.
3 [3971] - 5066 2876 e temon =1
4 42.80 55.46 30.13 " Cormodd
; L = N
5 44.96 58.82 31.09 (ool W
6 |4647| 6118 - 31.76 s o
-7 47.53 62.82 32.24 qvtem @oded
8 48.27 63.98 32.56 ° ‘ lP “l
: 48.79 | 64.78 .32.80 | Sensor (spead) Ll
10 | 49.15 65.35. 32.96 i
11 (4941 6574 33.07 " = seconrel”
— . A = F. . hilec"ﬂif
12 2958 | 66,02 3315 '8Ure 7.5: Block diagram of closed loop UM
1162| Insights on Embedded System \ ool gystems I

Scanned with CamScanner

The equation for controller favoring the above car Modej i , the fastest convergence withg,

5 ' yill occur when P = 1.4, Hoye, o

f_ néitlo: perfect tracking. _
 pay F
10 4 for perfect tracklng, Vi=vzy
50,

t Oscillatigp, and

. effect of iy,
I, the Objective of nitia|

Contro| System

U= P x uwhere u;=(re—) _

AUEPX(R=V) e, (1) s Now o
* . " 5

Then the equation for car model as mentioned is:

Vss = (0.7 = 0.5P)v + 0.5p fo=w
0r, (107 + 0.5, = 0.5p
©onVa= (05P/(0.3+ 0.5p)

since for pe_rfect tracking v,, shou[d be
¢ p should be chosen as Iarge as possib|
ol of p should be less than 3.4 and for ayo;
eOf initial condition, P should be 1.4. He
nts is to be made. So, setting the value

Guation(3) becomes

0
Vier = 0.7V + 0.5P X Uy = Wererriecinns S (2)

-,
Substituting the value of u,,

~(L.0
L e . ~(L0/{03+ 0.5P)) xy,

i close en
0, Via= (0.7 +0.5PIV; + O.5P(1) = Wi (3) 0Ugh to 1, So, the

€. However, for stability the
ding oscillation ang reducing
nce, tradeoff between these
ofP=33 (stable, track well,

Then, for stability of the contral system,
vi=(0.7 + 0.5P)vo+ 0.5P X ry— w '
v,=(0.7 + 0.5P)v; + 0.5P x ry —w
=(07+ 0.5P) {{0.7+ 0.5P)vo + 0.5P X 1o} + 0.5P x ry — y
If we generation above equation then for v,, we get
V= (0.7 = 0.5P)'v + ((0.7 - 0.5P)" + (0.7 — 0.5P) 4
+0.7-05P +1.0)(0.5P X rg=Wp)coon..... (4)

Here, the value of o' is (0.-';" - 0.5P). So, for the system to be stahre,
stability constraint (i.e., convergence) requires

[0.7-05P) <1 -
-1<0.7-05P<1

8

et 0

.I s.n‘ai

e oscillation),

: u = 3.3(r— Vi)

., lyiiﬂg the controller:

. Letus consider, Vo= 20 mph, ro= 50 mph, W = G, then

Vet = 0.7V + 0.5P(re— i) = w

or, Veg = 0.7v+ 0.5 x 3.3 x (50 - v;)

. Similarly, uy = P(r,=v,)

Ut i 3.3(50 =, Vt) . . ‘

The range of u, is 0 to 45 degree. Now, perfcrm:ng? I;FTS:E
' : ' i ion, Table 7.2(a

Gleulation for value of v, and u, based on this aSSumPttorgmas -

be obtained where speed and throttle position from time o i i

obta i en

btained. Here, the range of throttle is defined hetv:ze il e

e table 7.2(a), the controller generates the thro

le 0to 45
linge e, (0 - 45) which is not valid. The throttle saturates at ang
deﬂfees. -

Computing inequalities, we obtain
-0.6<P<3.4 '

This means, to make the system stable the value of P.should
between -0.6t03.4.

To reduce the effect of initial condition, the coefficient of vo s_ho::
be made as small as possible in equation(4). We have coefficient of vy s

; include this
~0.5P). Let us make it zero then, we have

' < ition where we |
_ Now, the speed and throttle position b = _0.95; the

T _ =0.7-=05
07=05P=g ¥U2ti6n in model in Table 7.2(b). For P = ::3, :lhe steady state of 4231 A
= z v oate ches 40 is
or,0.7=0.5p Peed Oscillates for many second until |t‘f~‘JEl hich means the automobile ;
"2tive valye of a causes such oscillation Wi than the desired sPe<
~P=14 P erating o0 hard when the current speed s les; tate speed i 10t 50
‘Similarly, to avoid oscillation, s Overshoot the desired speed. Similarly, s_}t:i; ;:ph :
0.7-05P>0. "ather it is 42,31 mph with error of about 7.
ornP<14 : _

. control systems [165].

Scanned with CamScanner

1164 Insights on Embedded Sresno

Since, oscillation of the car speed could be Uncomfortay,
passenger; the oscillation can be reducled or. removed by decreasitu the
value 6f P. So let us take the value of P.= 1.0 and obtain the data 5 g the
7.2(c). Here, though the oscillation is eliminated and convergency . by

_reduced, but the steady state speed-is only 31.25 mph whic Me

h repregg,, ¢
. ; en
error range of 18.75 mph. R , Uthy _ :
) : _ : 5 R —— S e
. . . L " 5 . . T —
Table 7.2: Closed loop automobile coptroller Speeding yp f'°mz 00 i VB E 8 7 8¢ 194 % 47 43 g9 o
A mph to 50 mph 0 : T B : Time {seq)
Time | v, u; Vi CUg ““VT-— Figure 7.6: Speed vs time for p < 33andp=g
- ; : u, i :
000" | 20.00 |°'99.00 | 20.00 | 45.00 | 2000] W psidering the disturbances like roaq grade:
1.00 63.50 | -44.55 | 3650 | 4455 | 29,057 21‘m (o8 pssuming, road grade of +5% and —s% for p - 5 5 then we get the

2.00 22.18 91.82 | 4783 |.7.18. __3_0_56__ TP pout at steéady state v = 39.74 mph and
300 | 6143 | -37.73 | 37.07 | 4268 | 3106 188
400 | 2414 | 8534 | 4729 | 895 | 3133 T
500 | 59.57 | -31.58 | 3758 | 40.99

6.00 25.91 | '79.50 46.80 | 10.55

44.87 mph respectively (valye
F shown). In the response of open loop automobile cruise system in
1]

;esehcé of disturbances, we observed output values at Steady state v,, =
F3 15 mph and 66.05. mph respectively (refer to Table 1.1). If we compare
3125 | 183 DLF;PUt values from two different cases then we can say that the response of
31.25 | 183 wd loop automobile cruise controller has less impact of external
7.00 57.89 | -26.02 | 38.04 | 39.47 31.25 18.?5 fisturbances in‘comparison to the open loop automobile cruise contraller.
o 2751 | 7422 | 4636 | 1200 | 3135 o 3 General Control Systems and PID Controllers

- 9.00 56.37 -21.01 3845 | 38.10 | 3125 | 1875 :

10.00 2895 | 69.46 | 4597 | 1331 | 31.25 | 1375 |§f73.1 Control Objectives _ _
11.00 '55.00 | -16.49 | 38.83 | 36.86 | 31.25 | 1875 The main objective of control system des‘lgl_T is to make °'~ftp‘-'t t;::
12.00 '30.25 65.16 | 45.61 | 14.48 ' 31.25 | 1375 |t reference input even in the presence of measurement ﬁOlIse,e;n .
: _ tror and disturbances. The objective fulfiliment can be analyz
: : : : : sessed ihrough various metrics.
47.00. | 44.31 | 18.78 | 4176 | 27.20 31.25 | 187

% L . Stability: For the system to be stable, all var
48.00 |-40.41 | 31.66 | 42.83 | 23.66 | 31.25 | 18

= remain bounded
149,00 4411 | 1942 | 41.81 | 27.02 | 31.25 | 18

' is tracki
75 Performance: It describes how well the.oumuft er;orm
5000 | 4059 | 3105 | 4278 | 23.83 | 3125 | 187 In the reference input. The various aspects 1P

In the figure below: -

.

iables in the system

ng the change
ance is shown

' : 7
ss 4231 | 2538 | 4231 | 2538 | 31.25 | 18 _
@ (b) ©

- _ s B ' . R s 1671
% : N __-_/ . - : : CQntru] svstem .
|166] Insights on Embedded System ‘ : '

Scanned with CamScanner

Response

Figure 7.7: Aspect of performance metrics in control

: 3 . whith
Disturbance rejection: Disturbances are the undesired effects
cannot be eliminated but its impact can be minimized.

. i
* Robustness: The system to be designed must be able to toleeh'i(Jf “
modeling error of the -plant. The stability and .performan¢

®* Overshoot (M

T+~ Rise Time
LS pea!ﬂ'ime
M, - O\fershnm
T.- Settling Ting
X ~axijs - Time

Y~axis . R?smnse

o Tiitia

System Fesponge,
Performance Parameters; Th

e different aspects of Performan
are discussed below: : ' 1

. Ris,a_%e time (T,) is the time required to

. 90% of its final value. It is @ measur
system to fast input signals.

change from 10%t,

° Peak time (T,) is the time required to reach the fi

rst pezk
of the response.

o) refers to an output exceeding its find,
state value. It is the percentage amount by which
the peak of the response exceeds the final value.

steady-

Settling time (T.) is the time required for the system to
settle down to within 1% of its final value.

Transient Response and Steady

State Response of Control
System .

Transient response occurs just after the.system starts and Wh_en
any undesired conditions occur. The system'’s response dun:_ﬂ
the séttling time is transient response. Whereas the Stt’-a;
state occurs after the system becomes settled. Steady Stad
Error is defined as the difference between the a.ctual.oytP”ta"
the desired output when system reaches steady state. .

—//

1168] Insights on Embedded System

e of the ability of ,

fitor!
i the plet™
y featt res

\hiéhﬁa\rMW value of P.

stem should not be Significan)y affecteq
sy 2

¥ the pre
sen
errorS- e of mﬁde1

viodeling Real Physical syqre,
zfﬁ;acﬁurate modeling of the pehay
" ontrol system design. Since the ¢
o model, the pl_ant model must

1 Of the plg s o~~~

: : S an €ssentia
ontroller yj, be designeg bag]
e aCCurate :

as ;
o of real systems are: far as possible, 74

continuous in nature: It respongs as con
continuous function of time. Since re
continuously reacting, the plant mode js "epresented by differens
equationé- Though continuous in nature, equivalent discrete time
model can be determined. But the sampli

pe selected much smaller than the reactio

tinuoys Variables anq as
al physical Systems are

Ng period, huwever, must

n time of the system. Such
sampling ensures system does not change much between sampling

instants.

‘Complexity: It is much more complex than any model we generally
assume in our design. Our model may not include nonlinear effects,
all system states, br all systeﬁn_ i’nteractions. Generally assumed

" model is a linear model which is sufficient when the variables of the °

. "model have a small operating range.

Proportional Coritrol _

A controller that multiplies the tracking error by-a SOrERan: _Is

referred as proportional control. The form of proportional control ls.'
uft) =P x e(t)

Where, u(t) is the output of the control!er, P Pl

tonstant, e(t) is the measured error and is the dilte

reference input and outiJUt of the system.

is the prgpﬂrﬁﬂﬂa‘

ady state

' Proportional constant affects transient -'T‘szzrl]t::’ofs:iop\;rtioﬂal

tracking error and disturbance rejection- Higbie by resulting in high

fonstant can cause system to become unst:ue of P will cause the
Overshoot and oscillation, whereas oW ¥

. ‘me Wi” be

. ince rise fimi
Syst be | nse or less sensitive, SiNC h for low
€M to be less respo ;

ror will be N8

. .
he steady state 9
Also th T gems |16 |

Scanned with CamScanner

control system for differen -

Ky-n01

. fioure shows the response of //,/—‘j
value of P. The followiné e N artyy, . Kes |
t values of P. ; n i _ ‘

" K,..s A

K- D

(@))

9 Response of system for (a) low value of ge
re 77" value of derivative constant

Tivative constap (b) high

(b)

Figure 7.8: Response of system for (a) high value of proportional constant g
value of proportional constant

proportional and Integral (P1) Control |

A PI ;ontroller is a special case of the PID controller in which the
derivative of the error is not used. The integral term in PI control is
the sum of the instantaneous error over time and the accumulated
error is multiplied by integral constant. Its output is given by

) loy

2. Proportional and Derivative (PD) Control
Derivative action p}edicts syétem behavior and improves settling
time and stability of the system. Derivative term allows the transien
response to be optimized without affecting the steady state response
and disturbance rejection characteristic. Hence, transient response |
and the steady state error independently can be adjusted by using

appropriate values of P and D in PD controller. The form.of PD contral
is: '

© () =P xe(t) +1x (e(0) + e(1) +e(2) +.. +elt))

pl contraller is used to eliminate the steady state error resulting from
P controller. However, it has. undesirable impact on speed and
stability of the system.

Characteristics of PI control:

* Steady state accuracy improves, slight variation in rise time,
response is oscillatory

u(t) = P xe(t)+ D x (e(t) - e(t— 1)) .

Characteristics of PD ‘control:

ifferent values of integral
L]

~ The following figure shows effect of d ‘
| i : stem for PI control action.

Rise time reduces, improves damping, overshoot reduces)
. : - constant in the response of an arbitrary sy

response is stable

The_fotlowing figure shows the response of an arbitrary syste™
for derivative control action.

[171

_ ; iy ' control systems
1170] Insights on Embedded System : ' - :

Scanned with CamScanner

K, -
K=l

Ky =0

(a)

(b)
Figure 7.10: Effect of integral term in System’s reg
gain, (b) Integral gain = 2.5

Ponse (a) N, lni

Proportional Integral and Derivative (PID) Contrg;
PID controller is a feedback controller that helps to
irrespective of disturbances or any variation in cha
plant of any form. It calculates its output based

error and the three controller gains; proportional g
K, and derivative gain D. '

attain 3 Set py;
racterisgits of \
on the Measiygg
ain p, integra| gl
* The prbportional gain simply multiplies the erro
reduces steady state errors while minimize
external disturbances.

rbya factorp i}
S the effect (f

‘s The following figure shpws effect of differen

2 genera| block diagram of pjp controller
T

show

pelow: "0 the fgyr,

PID Controlter

Figure ?.1 1: General block diagram of PID controfler

t values of P,LDin the

The derivative term ‘determines the reaction to the rate dff|

which the error has been changing and it increases damping i

improves stability but has almost no effect on steady st
error. . '

Its output is given by

ult) = P xe(t) + 1 x (e(0) + e(1) + e(2) + ... + e(t)) + D (el
€(0)) + (e(2) - e(1)) +... + (e(t) - e(t-1)))

1172] Insights on Embedded System

response of an arbitrary system for pip control action.
) P =g

EEE o

D=p Sl

LI 1

1 1

B3

L

|17l

control Systems

' Scanned with CamScanner

5 Summary of PID Control Action

ise ti MaxXimum | oo ing time | Ste2dy-state

Type| Risetime |, arshoot error

P Decrease Increase | Small change Decrease
__l_ Decrease Increase: Increase Eliminate

D | Small Change | Decrease Decrease ‘Nulsmau change -,
(*Note: In above table, the effe.ct is considered based on optlmal 3
rather than increasing or decreasing the value of Proportional, 'ntEg |a1
derivative constant) 3

7.4 Software Coding of PID Controller
A PID controller can be implemented usin
required initialization is done which is followed by re
and sensor value. Then,.after that error can be calcy
used to compute the output of PID controller. And th
~ to the actuator ‘which in turn controls the plant b
preportional, integral and derivative .cor'nstant define
pseudo code for the PID controller can be written as:

g SOftWare At r
ading referenmh
lated Which fu"hE
e refined Output
ased on the v,

. Set values for Pgain, Igain, Dgain
. Initialize prior_error = 0 and sumoferrors = 0 }
. Repeat following steps

Read value from sensor, sensorValue = getValueFromSensor)

— Readthe reference value, refValue = getReference\r’alue[}

— Calculate error = refValue - sensorValue .
Calculate sumoferrors = sumoferrors + error

~ Calculate difference = prior_error - error
Output =
difference

¥ * + . -n'
Pgain x error + Igain x sumoferrors + Dga

Set the output of Actuator, setActuator(output)
prior_error = error -

|174] Insights on Embedded Suectarm

Ntrolley

Jouble pgain, Dgain, Igain, ermrpre\,muﬁ\.,amE o s
ar

ipdat? |
IDupdate(plbdata pidData, doub1esensor\!alue double refyy e)
dlue

double Pterm, Iterm, Dterm;
- double error, difference;
error = refValue — sensorValye:
pterm = pidData -> Pgain * error;
pidData -> errorSum = pidData -> errorSum + error;
Iterm = pidData -> Igain * pidData -> errorsym,
difference = pidData -> errorPreviousValue - error:
" Dterm * pidData -> Dgain * difference;
pidData -> errorPreviousValue = error;

return (Pterm + Iterm + Dterm);

Yoid main()

b

double sensorValue, refValue, actu.ater\-'alue;
PIDdata pidData;
PIDinitialize(&pidData); o
while(1)
{ .
sensorValue = get\JalueFromSensur(];

refValue = getReferenceValue();

ate(&pidData, sensorvalue, refValue);

actuatorValue = PIDupd
setActuator(actuatorValuel;

Control Systems j17sl

Scanned with CamScanner

7.5 PID Tuning

imum values for the
:Pt'used to determine the values of P, I, and D. However, .
e

s essary :
analysis is not nec . . :

cizrn There are various methods for PID tuning, one of whic
concern.

tuning process. The steps for ad hoc tuning process are- . . %

7.6

explained in the following paragraphs. . '

1.

* constraints of the computer memory.

o is the adjustment gf “Iés: cantrol Paramete, tg
PID tuning ikl red control response. Quantitatiye analy. the
. | ta.n
. Bty
h is adh

') Uang
when safety and cost of using pja,

Start with small value of P gain, D and | gains as 0

Increase value of D gain until oscillation is seen, and thep p i
decremented by a factor of 2 to 4. i
Then, increase value of P gain‘ until oscillation or excessiye overgh
is observed, and then P gain is reduced by a factor of 2 tg 4,

Next, increase the value of | gain and reduce it slightly \;fhez
oscillation or excessive overshoot is seen. -

Above steps are repeated until satisfactory performance is achiwéd

Practical Issues Related to Computer-Based Contrg] _

The various practical issues related to computer-based contro| ae

Quantization and Overflow Error

Quantization error occurs when machine number is altered to fit the

* (Case I: when arithmetic results ré;iuire more precisions than

original values. For example, in operation 0.50x0.25 = 0.125, the
final result requires more precision. ‘

Case II: when analog signals from sensors are quantized by
analog to digital converter it can create quantization error. It
quantization process limited set of discrete values are definet
and if the signal or value from the sénsors doesn’t match t.he
defined quantized discrete values then rounding or truncatiof
will occur which results in quantization error. For examp
When 4 levels are defined between 1.5 and 1.5 as 1.5 A%
0,0.75 and 1.5 then the value 1.3 will be taken as 1.5.

; d
Overflow error occurs when the system attempts to operate E;n[he
results a number that does not lie within the defined range ©

|176] Insights on Embedded System

em’ 1.0[ATy 1= UD LonsidEr a
svsere five bits are used to repregen,
';B is used.to represent sigp, Using s

- Uch represent
joary numoers 010010 (+18) ang gy, (. "
i Y o
besults in 100111 which is (~25) rathg than (+39) ine
r - :

' :) @ the first i ;
ysed for sign representation, the undesirable Output regy| e

Jerflow error. The situation can get more el dieto
ove

: ; Complex f :
'mu'.tiP"caﬁO“ operation and floating point R € consider

Case of Signed bing

Y ny
the magnityge s

Wh“e sixth or
1on, When two
added thep

Aliasing

Aliasing is the consequence of improper sap,
ghen 3 signal is discretely sampled at 3 rat
capture the changes in the signal. In simple
reconstructed Sf‘g"all to. be different from original signal, It causes
gifferent signals to become indistinguishable. Let us congiger an
example in which the sampling is done at a period of 0.4 second

which results a sampling frequency of 2.5 Hz. Then the following
signals will'be indistinguishable

pling Process. It arises
e that is insufficient to
erm, aliasing causes the

y(t) = 1.0 x sin(6rmt), frequency 3 Hz
y(t)=1.0x sin(rtt), frequency 0.5 Hz _

ael) N I
all)

0.4

-
-

T ———— |
|

],
I
A N1\

18
0 02 04 08 08 1 12 14

u

18 2

iasing illustration _

joure 7.13: Aliasing HIUstr is
e, ne wave Wwith frequency of 05 H::rJ :
Hz 5.5 Hz, 8 Hz and so on:

al below Nyquist frequency,

For a sampling rate of 2.5 Hz, s
indistinguishable from sine waves at. ;
Also, it can only correctly sample 1B
Which i half the value of sampling F2t€:

11771

Control SySter™

|

Scanned with CamScanner

Delay results in control signal being applieq later
an

sy,
al &y
much delay results in performance degradation, Ths\fsterhs huhfn
. e Eff t

can be accurately analyzed and we need ettufd .
implementation delay to ensure its effect ig R atae, TR
N8 iy, o

Computation delay is the attribute of many digit

IC TECHNOLOGy

Intrdduction .
l':umcustom (vLstyic Technology

ance. Synchronous desi Lo .
perform ‘ Y' esign mgkes hardware] g 0 ° cemi-Custom (ASIC) IC Technology
characterized easily. Software delay, however, s harg Sl ,) programmable Logic Device (PLD) IC Technolo
So, code should be organized carefully to make de| ertg Preui 0 8y
Also code can be written with predictable timing bep, Ay pr dicry, Intrﬂd“‘:ﬁ"“
) ki £ i f a\fi[}

the effect of delay can be minimized to acceptape level ") Sugh n i

1

A structural representation of the system generall
'.;ar'lﬂ'-‘5 cqmponeﬂts and th,EII'. interconnections to im
;l;ﬁctiﬂf‘a'it."" IC techncTIDgyj is more _about mapping the structyral
:mpresentation to a pt}vsufal implementation, The physical implementation
| n be done using various methods, out of which full-custom, semi-custom
nd programmable technologies are few common methods. As cMos
{ransistor s the core of every component, let us take a look at CMOS
transistor and different layers requilred for its physical implementations.

¥ deals with the

plement system's
7.7 Benefits of Computer-Based Control Impleme

The following are the benefits of computes-
implementation.

Ntatig,
based gy,

1. Repeatability

~ Analog systems are more prone to aging, tEmperature
manufacturing tolerance effects which cause results to vary :: 0ST ansistor
(M rans

time. However, the digital systems can produce ident; :
’ el resu CMOS transistor consists of three terminals: the source, draih, and'

longer time. . ‘b | b curfare of

. § cate. Source and drain are created by implanting ions on the surface o

,2' ' Stability '] E:T:Jns Gate is formed using poly;-siiicon, and lies between source and drain.
Since digital systems are less prone to different sorts of degradatif gate is placed on top of silicon and is isolated from silicon with the help of

and optimizations can be implemented efficiently, systems ai siicon dioxide insulating layer. Gate voltage controls the current flowing
become more stable. *flom source to the drain. In case of nMOS transistor, a high voltage at gate

will attract electrons from silicon substrate towards it resulting in formation

3. Programmabili
- ' rain. For a low voltage at gate,

Advanced features can be easily implemented in digital systems b ;Of conducting channel between source and d
that would be very complex in analog implementations. Few fedt®®f the conducting channel is not formed.

include: control mode and gain switching, on-line performé® ' ¢ Gate
evaluation, data storage, performance parameter estimation ? ' i -
adaptive behavior. '

4, Flexibility " :
Computer based control’ can be easily re-c
requirement which allows periodic upgrade and en i
_system. It permits modification of the sequenciné ol pruﬂ”ﬂ
procedures for different products and for frequent chané

specifications, "

nfigu red based o
hancement?

= =

or and is top-down VIEW

Figure 8.1: CMOS transist

1178 Insights on Embedded System

_4
Scanned with CamScanner

3. Computation Delay
' Delay results in control signal being applied latey tha
Computation delay is the attribute of many digita) de
much delay results in performance deE’ad‘ation_ . Yste
can be accurately analyzed and we need

implementation delay to ensure its effect js |,

IC TECHNOLOGY

he eﬂ:a

ct tion
to g Ot jntrodu

'fu"_c.ustom (VLSI) IC Technology

tharg,,
egligipl, .
Bible i-Custom (ASIC) IC Technology

" i : rdWare d
characterized easily. Software delay, however 5 g
’ Tder t,

So, code should be organized carefully to make de|
g 2 d ;
Also code can be written with predictable timing beh Y Preg,

av
the effect of delay can be minimized to acceptable level

performance. Synchronous design makes ha -sem

ng,ammabk Logic Device (PLD) IC Technology

introduction

A structural representation of the system

generally deals ywith
Hit : / the
b components and their interconnections to implement systery’
ya ‘ ' s

,?:mﬁ;tior‘-a"t y. IC technc?log\{ is more about Mapping the structyral
L_-Igprese"tatio" -to a pt?ymr:a': implementation, The Physical implementation
| be done using various methqu, out of which full-custom, semi-custom
L pwgrammable technologies are few common methods, A CMos
'I';raﬂ-"iswr is the core of every component, let us take a look at CMOs
'_'"ansistof and different layers req uilred for its physical implementations.

Iﬂr,_Sch)

7.7 Benefits of Computer-l?-'a'sed'(:tmtml Im

The following are the benefits of com
implementation.

plementatiun
Puter-baseq tony

3. Repeatability

Analog systems are more prone to aging, temperatyre
manufacturing tolerance effects which cause results t0 vay .- .
time. However, the digital systems can produce identical result:‘: 05 Trans 5507
longer time. . :

2, Stability

Since digital systems are less prone to different sorts of degradai
and optimizations can be implemented efficiently, systems a
become more stable.

CMOS transistor consists of three terminals: the source, draif, and’
gate, Source and drain are created by implanting ions on the surface of
dlicon. Gate is formed using poly-silicon, and lies between source and drain.
'._Gate is placed on top of silicon and is isolated from silicon with the help of
slicon dioxide insulating layer. Gate veltage controls the current flowing

from source to the drain. In case of nMOS transistor, a high voltage at gate

il attract electrons from silicon substrate towards it resulting in formation
of conducting channel between source and drain. For a low voltage at gate,
l_he conducting channel is not formed.

3. Programmability

Advanced features can be easily implemented in digital svste"““‘_
that would be very complex in analog implementations. Few feal®
include: control mode and gain switching, on-line perform®®
evaluation, data storage, performance parameter estimation,
adaptive behavior. :

Gate

4. Flexibility : : i
Computer based control’ can be easily re-configured b::
requirement which allows periodic upgrade and enh,anceme
_system. It permits modification of the sequencing aninp
procedures for different products and for frequent changé

specifications. ’ :

SR Tt e ’ . whn view
Figure 8.1: CMOS transistor and its top-do

: | . . : . ” Techﬂﬂlugv 11791

|

Scanned with CamScanner

1178 Insights on Embedded System

Layers in Physjca
The transistor

rain, oxide layer for insulation, and poly-

Implement&ition ,
basically has three layers:

diffusion laye, for

' JL=
&Ba?;a”\h

M anufacturing Procesg
anu! S
|C manufacturing Process cap be d‘wid' _d_' m——
and manufacturing phase | *% 100 two phages,

L se design pha

N silicon layer fo. . “Urca @ L PN Ty h S€, Stryct .

circ : . or n Is AONE, Whereas ma . ural de
artlflts, there \u\fall be number of transistors connected together t, & For #slﬁavo t desie e . e n“_factunng phase includes uar‘slgn

$h Icular functionality. These connections are represented by me:ef’fes@m i from mask of Packaging. ous

3 ;
i ei‘e can be number of metal layers based on complexity of Ia_YEri of sign Phase
Mplemented. Each metal layer is insulsted from another iy ne |

layer. Hence, there exi

Sts number of oxide layer.

r _Metal2 Layer

Oxide La\}er

‘Metall Layer

Oxide Layer

Poly-silicon Layer

Oxide Layer

pdi[f

Naier

Si]icon Substrate ©

layer Using Okide

n design phase, the structural description 5
'the 5,‘,ste.'rr:..is develupgd. Initially, the beha
system is implemented using hardware ¢
high.mvel HDL describesi the circuit at the R
first step in the svnthgsts pro;ess is compilation which converts high-
jevel VHDL Iaqguage intq a netlist at the gate |evel, The second
procéss is speed and area optimization which s performed on gate-
level metlist. Finally, the physical layout of the system is generate
with the help of place-and-route software. The layout specifies the
placement of every transistor and'eve'ry- wire connecting those
transistors.. Several EDA (Electronic Design Automation) tools are
available for circuit synthesis, implementation, and simulation.

long with the layout of
vioral descripti.nn of the
escription language, The
egister Transfer Level. The

Paiss = diffusion of p-type material, Ny = diffusion of n-type material

Figure 8.2: Basic layers in physical implementation

Example 1:

Draw the transistor level circuit schematic and top-down view fora
NAND gate

2

Figure 8.3: Circuit schematic and top-down yiew of NAND gate

|1180] Insights on Embedded éystem

Structural Design Layout Design

' i ntand
Beha\':loral Optimization | . Placeme

Description Connections

RT-level description
Gate-level netlist

IFigure 8.4: Désign phase in IC manufacturing process

Manufacturing Phase I T—
Manufacturing phase consists of several steps ‘?thh "
figure below and later each step is explained briefly.

Mask Creation

Cutout and
Packazing

l,allr!liﬂs on
Silicon

Waler Creation
and Cleaning

§ e85
, facturing pro¢
Figure §.5; Manufacturing phase A SRR

‘ (¢ TechnologY I

Scanned with CamScanner

ARSI Wi el .

PR e MML URSIEN O the Syst
e .

into masks. The number of masks requirem
ent
Y the Systemg to Yy

on number of layers defined b

for different layers — such as oxide layer, mety I Plexit,
generated. Generally, masks contain Wil Ayers . Wy
regions, so that number of IC's can be produce;r of ; "
Silicon wafer creation and its cleaning; |, 5 S a,t Once.
silicon is melted. Donor impurity at cible,

hi

Layering on silicon: Varigys layers are devel
surface. Layer for masks can be creia €loped gp the silicon
Phy, whi :
create patterns, is very commgqn mi‘lh";ze?nﬂl':tncafl fadiation 1
this process, the layer required, for example Y‘_{“ng Process, |
puilt onto the silicon surface whicy is (J'uwarI:J slicon dioxige, ig
positive photoresist become Ppedl

"
jit-

¥ photoresist.

. : S soluble wh
Oms can pe Py ’ . : : - en UV rays are o
: a ! . Using proper ali Xposed
the crystal. A seed crystal is dipped into Addeg to dqtr on it 8 P' P gnment, the yy rays are passed th
- Molten .~ 'k e masks which cast a shad rough
pulled upwards rotat i =0 silie th OW on the ph ist wh:
. .p rotating it And cylindrical ingot js My “ Jayer of silicon dioxide i< requ; photoresist whirever the
controllifig temperature gradients, rate of g oy, § ¥ : required. Then the soluple photoresi
’ , - . Pulling and b is washed using appropriate solyent Fi sist
rotation. Finally, the ingot is sliced With a wag, -Spegy sisside 15 etched Y g - Finally, the exposed silicon
“polished to form wa aer say L Y using chemicals and tp in
P fers. g photoresist is removed to expose the regions of sil?c;:mdf"nfzg
R i ioxide
. - that we required in our layer. The whole i
. ; ; , process is repeated fo
M:illtilé'lognof éntrgducmg Growth' of Rotating ang Cylinds; each layer. g : r [
eed Crystal Crystal ; Tica) : ' ’
‘ ¥ : ysta Pulling Ingot iv. Wafer testing: Number of ICs is produced in a single silicon
A wafer, which afre subjected to test‘ for errors or faulty ones.
— 3 - Testers or waier probes are equipments used to test the
| correctness of the IC's by inspecting the output response for the
. SIERER streams of input.
’ w _ v. Chip cutout/packaging: Individual IC from wafer is cut out using
ienione] I eRr G " a diamond scribe. Verified ones are mounted in zn IC package
- Yo ¥ | J

Figure 8.6: Silicon wafer creation .

Wafer must be cleaned before any layer is deposited on it
Various cleaning methods can be used. Chemical cleani§
methods are commonly used. First method of chemical cleani
is by using piranha solution in which wafer is immersed in i

mixture of hydrogen peroxide and sulfuric acid. Anot¥

method is using sonic waves in cleaning solution which is know!
as megasonic cleaning process. After the water is cleaned'
chemical, it must be rinsed with De-lonized (D1) watef: hel}
the wafer is dried using either nitrogen gun or by baki

fie'
spun dry method can bg used to make the ' Mask alignment and exposure,

(,)W in barrier layer and remove photoresist.

cleansing process.

EBZI Insights on Embedded System

which encapsulates the IC. Packaging prevents physical damage
and corrosion; also supports electrical contact. Through hole
package and surface mount package are examples of IC
packaging. Single In-line- Packaging and Dual In-line Packaging
are types of through hole packaging. '
12 Photolithography

Photolithography is the process which transfers a pattern from 2

to a light-sensitive chemical photoresist on the substrate. The word

i.: P DIith’OS"@th is from the Greek origin: photo means light, litho means

e = g tterns,
e and graphy means writing, It uses optical radiation o create b%

: , involved in
~_J__ Complex circuit on a wafer. The various steps Invo

barrier layer, photoresist coating.;t?_:
develc.p photoresist, hard bake, etc

.

.?Ptc'"thOEl’aphic process are deposit

i Technology 1531

Scanned with CEFnScanner

ii.

Photoresist :
& Excess phoforesist
g B flying off
h e

The various ;teps of photolithography are explained Beloy.
, w:

Deposit Barrier Layer '
Barrier layers are the_ materials which are reqﬁired to be
substrate. It may be silicon .dioxide, silicon Nitride, Pa:d ﬂﬂth
metals, etc. Differ_ent methods can be used for barrier ¢ V-siicy o
thermal oxidation, chemical vapor depositiom, sputtering_an‘;rm o 1
evaporation. Silicon dioxide ‘as a barrier layer is used tg ism\ﬁacu.. !
layela' from another. For instance, it is used in electric %
multilevel metallization. Silicon Dioxide can be groy i
oxidation which uses O, gas in a chamber or wet oxida !
the wafer is submerged in water. When heat is a

oxidation process, it increases the rate of Si0, growth,

al isolaunn _

ti()n in ""1] 1

Photoresist Coating

Photoresist is a 'substance which changes its characteristi'cs
exposed to- UV 'light. Before - photqresist IS, Coateg
hexamethyldisilazane (HMDS) is used on Fhe surface to improv
adhesion. After that, liquid photoresist is coated over barrier Jayer
using spin coating method. In this method, the wafer is helg o
vacuum chuck which is spun at about 3000-6000 rpm for about 15 .
seconds. Appropriate spiﬁner rotational speed and viscosity of resig!
are essential factors to define photoresist’s thickness which is abau
few micro-meters.

Whey

Photoresist Dispenser

Vacuum Chuck

Figure 8.8: Photoresist coating — spin coating method

Types of photoresist:
a. Positive photoresist

b. Negative photoresist' .

|184] Insights on Embedded System

: ‘ut becomes Soluble

soluble

. sgte-but DECOMES insoluble when exposeq 1 UV light
] t y

oft pake or Pre Bake

;ft pake is simply the proéess'of heatin

ne solvent from the photoresist, Baking time ang ¢
depend on the type of photoresist useq , eMperature

nd baking method .
: . Diffe
paking methods mcludel hotplate, oven baking ang micm‘:ent
ave
paking:

Mask Alignment and Exposure
Maskis _sirnpl‘/ an opaque plate with holes tq pass UV ravs: It containg
pattern to be formed on wafer. Mask js aligned with the wafer
accurately with the help.of special device: steppers yse automatic
pattern recognition and alignment systems. Alignment masks are
available on the mask and on wafer so as to make alignment more

8 the wafer Which removeg

precise.

. Once the mask has been precisely aligned, the photoresist is exposed
through the pattern on the mask with a controlled amount of UV
light. Exposure will cause exposed positive photoresist to become
soluble whereas if negative photoresist is used then exposed part of
it becomes insoluble. There are three primary exposure methods:

-contact, proximity, and projection.

" projection

Contact Proximity _
ol T AN
= a8
Mask -

A N/

ure methods

| Figure 8.9 pifferent eXpos

Scanned with CamScanner

Contact Printing: In cun}act printing, the Fesist.
wafer and mask are brought into physica| cOntac ;0 g
to UV light. This method results in very higy, resal h?” e%:"
debris, trapped between the resist and the maskumn "l“:
the mask and cause defects in the pattern, © N dama& :
Proximity’ Printing: In this method, smja gap is. .
between wafer and.the mask during expmuremamzai%
minimizes the risk of mask damage at the eXpense uf.,%r h.
Wtig

Projection Printing: in this printing method, g, b ,
] age

patterns on the mask is projected onto the resisit-coated '
High gap eliminates the risk of mask damage anqg high W
i; possible, For high resolution, only a small Portion o
is imaged and stepped over the surface of the wafer,

Fesoly,

Develop Photoresist

Barrier Ilay_ep is exposed when the ;oluble photoresist s chermicg
washed away using a developer solution, In imlmersion develg §
method the phqtoresist-coated wafer is immersed in a develop
solution. Then, it is rinsed with DI water and dried using $pin dy
method.

Hard Bake or Post Bake
Hard bake _is used to stabilize and harden developed photoresist i

vi.

not only improves adhesion of the photoresist but also remoisge

traces of solvent or developer solution. But, however, improper j

bake can cause resist rerhoval_ more difficult. Baking time &
- temperature can vary based on type of ‘photoresist and baking

method. '
vii. Etch Window in Barrier Layer IR e W . .
As hardened photoresist does not shield all part of barrief Iaﬁ
etching method is implemented to remove the barief layer o
was left-uncovered. Two methods of etching can be implemet.

- . Iso kn : scale Integrated
' [ing, and. dry etch 2= - : LS| (Very Large Scale "
wet etch, also known as chemical etching, ey submerEEd'” ._Flf"*Custom IC technology |nciudeS.V : ilﬂe complete transistor-level
as plasma etching. In Wet etching method, “:: eDr etch methe?” ﬂ:;"t} design in which the designer 8% " ponents used e
i Arri i . Dry it & an as!
gud and unprotecteQ barrier layer is remove < i aye! by for every processor, memory Jesigner reates layouts fo::h i 1
plasma which collides with the surface and remoV 80 0 this technology, first e re placed and connected, whi i

_target material. -

|186| Insights on Embedded System

g

P >
~ Deposit Barrier Photoresist Soft Bake Mask Alignment
Layer . Coating ’ and Exposure
R :
: e N
S 1 W
; ’ " ‘Hard Bake Develop
pi;"'iﬁresm * Etching Hard B2 Photoresist
Emoval
. . TR rocess
Figure 8.10: Various steps of photolithography P

4" Full-Custom (VLSY) IC Technology

emﬂve Photoresist

Bin Jlty,” the rema‘ininlg Photoresist is str
expos'“g the reqltllred barrier layer, Photo
Jsing solvent strlr:lpersf which’ cayse the
,dhesion from the substrate. Another meth
is by bu_f"i”g the resist in an oxygen plasm
is called resist ashing.

.ipp‘ed from the sﬁrface
re5|?t €an be remoyeq by
resist to swel| and lose
od of Photoresist removal
a ‘svstem and this process

| The photolithography process can be summarizeq diagrammaticall
it Y

-
i

Barrier Layer - Photoresist

_ Uuvlight Solvent Evaporating

Ponents, And then, components

Scanned with CamScanner

later translated to masks. Finally, the masks are gjyep, to th
e

for fabrication of IC of final design. The design steps are sh any, vaﬂwgesz
own i o, -l icad £ cost and long time.
8.11. _ : N the i g pis uigh NR me-to-market. Designin
on with the help of CAD tools, can be time. E 3 complete
Designed Layouts of Components are placed and | oubs ev ddition to that, creating masks f, tonsum.ng and prone
basic components connected, later translated to masks cfahricate g (ror- In@ P Or every layer of IC ag dle i
- kS o gy, 0 in desién process. 230, IANUIaCtured IC may conpay errors leag .
Y 3 e |
ALU layoy ;:ﬂ?[,r oment of several re-spins. All these ng to

factors cause full-custop, IC
e-to-market,

DD;D} =0 L=

Figure 8.11: Full-custom 1C technology

JE° gy to have high NRE cost and long tim
ot ¥

S emi-Custom (ASIC) IC Technology EA?P‘ icod Spﬁirit. ¥ Ckt)
(n semi-custom IC technology, s
§ i ustom layout rather connects th

er | € pre-positioned building blocks. The
. of chip with pre-existing gates will lessen the design work of layout and
creation. S0, the NRE cost is reduced while the time-to-market s

atively fast as compared to full custom IC technology. But, however, there
i reduction in performance in terms of power, size and speed. Two
woes of semi-custom IC technologies are described in the following

designer does not require to create
Placement, routing and sizing are few important

that should be done carefully for an efficient layoy
represents the task of placing and orienting the tr
Routing is the task of connecting wires between the
width of each wire along with size of transistor is take 1
Placement and routing should be done so as to avoid overlappiyg 4 'I
transistors and wires. Placement also defines the length of wire re

physical design
t design, Placemy,
ansistors on thy It
transistors, In siziy
ninto consideraliura

Quiredyle3 1 Gate Array-Se'mi-Custoni ICTechnology

connect transistors. Large size of wires and trandistors Provide bety i Inag_a;-e;r;\-rEt;chnoldgy,achipwith arrays ﬁfpre-dEsignEd_léig;

p.e-rformanl:g.s, but it .increases power consumption and demands my ates is utilized to implement the desired circuit. Here, the masks for
silicon area in the IC. Compact layout can lead to an efficient design. i

. - i g : : "“$lansistor and gate levels are already designed, so the designer has the task
Instance, transistor placed at closer distance requires shorter connecg of conrtecting pre-designed gates to achieve the desired implementation. In
wires, which further decreases the silicon size in the IC. In eady dif .

. ' "'l technology, a set of masks of predefined gates are provided to the
compact designs were implemented using hand layout technique whids§

: . signer whothen provides the connections among gates to implement
generally used for small and critical components. Today, however, Dh‘ﬁ'fd [Equire circuit. Maisks of connections are generated and al masks are used
design tools are used for automatic layout of the design which runs

fabricate the 1C.
hours or days to generate the optimized layout for better performance

Connections ta implement

 Set of masks of predefined ired circuit, which are IC fabricated frem
Advantages: : ol gates dﬂ:j:lc;:m masks masks
Excellent efficiency: With respect to power consuf? s

performance and size, full-custom IC technology can be highly eﬂ;clgeﬂi
Since layout design is done by the designer, the components 2l be Fl}a
closer to each other which can be connected using short wires. Such
yields optimum performance, size and power. '

S5
D D
Do

— |

o
Figure 8.12: Gate array sé

X Es|gﬂp
om d 0

. No wasted area and no unused transistors: In full-cust here &

t
required transistors for the circuit are placed on the IC. But

unused transistors which prevents wasted area. _
""”p./ -

[= r=

1188 Insights on Embedded Svstem e

Scanned with CamScanner

This technology results in fast and relativel ;
cycles. But, gates are placed in advance which May resyle ’.(lmerm\,E ’
gates, since all instances of each type of gate may noy bem manvue%\
desired circuit. Also, the fixed placement of gates cap, i r

. Un
i ?qulred l:seﬂ
wires between gates as the connection is not known While in Iung 'ouu.l"
placed. - ' T Bates gy 3l X

ream'
. et
| izl

EE | ;
@

Placeme j)4
o nt and connections amaong 4
5, whose masks are Benerated mab'imed fromas i

atks

] (]
[1E3]

Figure 8.14: Standard cell semi-custom |C technology

OO
(OO0

The designer selects the cell, its position and its routing mechanism
o requires more NRE cost and longer time-to-market as compared tc;
_ "té.arra‘r_' technology t?ut still requires less than that of full-custom,
However, the e_ﬁicie ncy is better c.:ompared to gate array but less efficient
i ull-custom design. Hence, standard cell design lies between gate array
"l custom design in terms of NRE cost, time-to-marker and

_peﬁo‘;mance.

EEEEL
Toog

BB

Figure 8_.13:_ A simplified gate array layout

- J

L COE

OO
i} (m[m[s]

AND_2

OR_3’ J

2X1 MUX

TooooL

Cell Library

8.3.2 Standard Cell Semi-Custom IC Technology
_ In standard cell semi-custom IC'techhoI'ogy, functional blocks, whit
are also called cells, with known electrical characteristics are utifized in fie
design to achieve very high gate dehsity and good electrical performac:
Cells may include logic gates such as NAND, NOR, etc. and other funcit® ‘
blocks like multiplexor; ‘flip-flop etc. In this technology, designers #
facilitated with a library of predesigned cells from which the designe”"'e[:
the required cells that are needed in the désired circuit, M35k5 of cls™ B
created after the cells are placed and .connected. Also the mé 5

e

f‘igure 8.15: A simple standard cell layout

34 Programmable Logic Device (PLD) IC Technology 3
| " device IC technology _th_ere e)
med by the designer to lmplem%‘n

creating Of breaking

In programmable logic d

Programmable circuits which are program <
g in this case, mean

- ; . the the requ; i sramming, : ing a fuse
connections among cells are generated. Using those maskS, q_red design. Progra ot gates, either by blowing & '~
: SR “nnections between wires that €0N"® & le switch. In this
fabricated. With high - cufrent setting 2 bit in 2@ programma program™ is
urrent, or - v logic: function S

technology, a pre-fabricated chiP with no (08! < the required portions @

L ram
_'ﬂade avaiiable to the designer who then PEOEE r

e chin 1o - - ed functionality: |
: ® chip to implement the desired fun Ic TechnologY 191!

Scanned with CamScanner

dannl le~lnkicr an Cohaddad Curcknina

It offers the designer the facility of changing design funey
after it has been programmed. PLD can be Programmeyq, er;:ns%l
reprogrammed number of times, allowing easier Prototyping an;d' 3ng
modification. 4

There is a wide variety of PLD types, including Simple PLD
PLD, GAL (Generic Array Logic), FPGA {Field-Programmable Gate‘ C
well as many others left unmentioned. Programmable Logic.Arra
Programmable Array Logic (PAL) are two examples of Simple p,, ram

rOBrammame Ay 'fngic uses just ppe Programmat) P
- gand programmable AND matrix, 1t decreases nymp & array: fixay |
A i i e .

4 mr: amable components which further reduces size ang dreraf e":eﬂﬁ__ve

._ga e ggnera"\' pes for. low-complem\’ Problems which re;':lirmfa{nd

I oed. A the complexity grows, Complex Programmable (g e afwly

et P us;t be used. CPLDs are the gic Devices

olD

integration of nym
; €rous SPLDs w;
e programmable interconnect between them, cpip is 5 cumhinationlthf
o]

Logic Devices (SPLD). Programmable Logic Array (PLA) consists af twrn) __N prog,amma?le ﬁ_\ND/OF? array which perform g multitude of fogi
of logic arrays: a programmable array of AND gates and 5 pngrao lang, s Cﬁons and m|crocejls which perform combination of sequential logic
array of OR gates. The AND plane and the OR plane give the pqy % fiyo, may use an3108 Sense amplifiers to boost the performance but at h,
computer any function expressed as a sum of products. Every'Anp ity L ofvery high current requirements, :

AND plane is associated with inputs and complement of inputs ¢ Batej, st _

0
any product term. And, OR gate generates the sum of AND g "

¢ LUTION TO IMP :
The example of PLA is shown in the figure below. € Outpy S0 ORTANT QUESTIONS

Example 2: Implement the following truth table using PLA

. praw the top-down view of the circuit on an IC for the given
I e function F= XY +Z '
0| 0]O0 0 0 1 F1 = ABC
0|0].1 0.} 1 0 SN TN
s - ! d 0 : 0 F=A®C, . One way of solving this question is by representing the given function
: - : ' 2 - 0 PR RE using NAND, NOR & NOT gates. So the given function can be written
1 0 0 0 1 0 . i
110711 0 1 0 as:
1 1 0 0 1 0 F=XY+Z
. e .
e R 1 - F=(XY+2)
A LB E —
J\z ‘{3 g F= XY.Z
D A'B'C
™ e _F=(X NAND Y) NAND (NOTZ)
= X te and one NOT
D ol So we need to use top level view of two NAND.ga o
Pl x F,){Y{-Z!SaSShQWHbEOW
o wae gate. The top level view of the function .
I_L .AB'C' °
D AB'C
DO e
[ABC

VWY

F1 F2 F3 F4

Figure 8.16: PLA implementation for given tru/thltjili//

1192 Insights on Embedded Svstem

1 TechnologY 11231

Scannéd with CamScanner

V55

1194] Insights on Embedded System

MICROCONTROLLERS EMB
~ SYSTEMS

| 8051 Microcontroller Family,

EDDEp

Inté
gets .
assembly Language Programming

its Architectyre and Instruetion

Inter'facang with Seven Segment Display

intel 8051 Microcontroller Family, its Arch:
[nstruction Sets y. rchitecture ang

mtroduction

Microcontroller is a small computer on 2 single |c which contains
. processor core, along with memory, I/0 ports and other features.
Microcontrollers are used in embedded applications in which systems
are controlled automatically to carry out certain application. Almost
every system using microcontroller performs control-oriented tasks.
several peripheral devices are inbuilt within the microcontroller to
carry out the specified function. Timers, ‘ADC and serial
communication devices are few examples of peripheral devices. '

2 Block Diagram

The general block diagram of the microcontroller is shown in the

\ figure below: _
Microcontroller
—v]
cPU RAM ‘ROM
;) Other
Features
L e
. Serial
I/O Ports Timer bott
W
. ' icrocontroller
Figure 9.1: General block diagram of microc
195|
. dS\fStems l
in Embedde
controllers it
__‘

Scanned with CamScanner

3. Comparison with Microprocessor
Many would easily presume that microcontrol|er and

to be similar. However, the following table will Makpm%‘ﬂr’
distinction between microcontroller and m'cmpcheSs e
or,

it along with OnEr Teliable resources ; Must be reaq
in required quantities at any instant of time, iy availap

mpari son of 8051 Family Memberg

051, so i
Uy ach member of f lmEhtOW differs from each other. Though
. are a '
| SN [Microprocessor Microcontrol| he instruction S€ts most common, the features Provided
er he 8031 microcontroller is also referreg @n
1. |General purpose processors |Special pur T 3s ROMless 8051 5 all
2. |1 | ' FOS€ Protessyy, segtiiries. 7€ COMMan except ROM space. The following tabje g,
. |It contai q i show
| ntains comp ete functional |In addition to functigy, | parison of 8051, 8052 and 8031 microcontrollers, 5
CPU only has timers, 1/g 3 Cpu_Tt com .
RAM and- Ror\:on ; ”"ternd Table 9.1: Comparlsun nflhree microcontrollers
an
features d Othgy l 8051 8052 8031
3. |Designer can sel i ' : ‘ : T
g se ec‘t j:he size of|Size of Memory, numbe, s 4K ' 8K o % %
memory, number of 1/0 ports, |ports, timers’etc are Fixed ‘ 128 /6 g
ti : org ' 2T
IEEs, Bt tf’ be used particular microcontroljer \ 2 3 2
4. |Clock speed in very high in GHz|Clock speed is loy in M \ 3y 32 .
|range range . M R
5. |Powerful addressing - modes|it focuses on bit handii ‘ : L l 1
and many instruction; arelinstructions along with byte lnterrupt 6 8 6
available to ~ move data|processing instructions, Sources i
: 7 ([Toger d
between memory and CPU 4 8051 Architecture : \..mr f
6. |Access time for externallAccess time for onchip i. Internal Block Diagram of 8051 > cm!;‘ﬁé%x
memory and 1/O devices is|memory and I/O devicesis less ' | l
more o : g Data Memory Twol6hit .
—— . — Oscillator i:,:f;:: 128 bytes TumaifEveTk :
.7. Microprocessor based systems|Microcontroller based systems and Timing po RAM Courters o
are expensive and consumes|are cheap and consumes les 1
more power o o |power T
R ' 8051 CPU_[+-
4. Criteria for Choosing a Microcontroller _\—1 \
. e It must meet the computational needs of the task efficientlyard — t : = SBT;::{‘
¢ - nterru 1
' cost effectively. Other considerations includes : cgntr; Epariich |*
5,5 . fla P
o Speed, packaging (DIP(dual line package) QFP(qU:i —T 0
package)), power consumption, amount oflR»"«WL an : ER AL serlin SHI0%,
number of I/O pins and the timer on the chip ExEFH st control o mhiu:cwré
] : i " £80> g ;
t per units . diagram 0 i
o Ease to amendments, cost p Figure 9.2: Internal block | ;-

it Sor® _
e It must provide flexibility to develop products afOU“"ssB : ; . i
" of the considerations include availability of an @ e i J

debugger, C compiler, emulator, technical Tf’/

- |196| Insights on Embedded System

Scanned with CamScanner

ii.

Features of 8051 Architecture . .

a. Eight bit CPU with registers A ang B: Re
" Accumulator is used for mathematjcg and }

—————

operations. Register B is used for ullly l::a.ranq .'
divisionpurpose. e

By (Slen: Mt BORem COUMAY T0G) g g,
(DPTR):

PC points to the address of neyt 1., . Po].“& P
executed from ROM while DP '

TR is used to

tuh

3

memory, addresses fpr internal and e externg) ;‘-t ly the
0

and external data access. DPTR is mage u
registers, DPH and DPL.

Eight bit program status word (p _m)_ Four flags i .
are used.torepresent the outcom S of mathe "y
| gw%m

and Parity (P) flags. It al;u consists two register = .
which select the particular register by

bank; Rsq 4
, determines which register bank is bemg used oyt of
register banks. oy

- e h\'l

e

a"" SOt whinguer
%aaaﬂ s foxt o Fvom

,P(’;:;l' g é' » g n.\.mo,w Hhare

{.‘% t) 5 m‘n’ from

Eight bit stack pointer (SP): P gomts 10 the stack Whmm

e data quickly for some
operations. It follows last in first out technique,

Internal ROM: It consists of 4 Khvtes or memory space | -
program memory. Look up tables can also be storedwfunh ’
can be accessed using appropnate instruction,

Internal RAM: It consxsts of 128 bytes of memory Spaced |
*data memory.

g
tster Bonk ;
dhafoslt bot,)

swo CGn Soleck on

{ b I avegter el) o Four Regi with eight registers (R0~ §
sin _““ w;;‘; ;&5‘#\}“ Bank O occupies address from O0H to O7H atf§
prd “3“\& onk, consecutive addresses are used by bank 1, bank 2218
A

bank 3. Total 32 -registers are available from addres §
O0H to 1FH. Bank 0 is selected as default RSL= =0and
RS0 =1 in PSW register will select the register a1 .

Sixteen bytes of bit addressable memory: The,add;j,.
from 20H to 2FH of RAM is bit addressable. 1'® un .
in bit manipulating operations. Each- bit @

addressed usin ct address from QOH to 7t
nFFH ﬂ‘na 08drenyeble Trgtigh

Moy
h T. oddevt able_inghisa”
fisights on Embedded Svstem

(i.‘ﬁi'\ 3051 hey a

[
%-bit Stack fojnter + Tocal ugcJ 1y
'm, 16+ loc il
L o Sbeh volot 0 "82";;':;'1?.‘:&,':%: iy o s S i Sl

ST ey

R e
o Eighty bytes of Eneral purpgse d
for various operations When réquired, 4o o
gank 1 Bank 2 ji"_kj ““*——»—M ba“éﬂ r
/e F|| R 7l R [0
R | || e] H
B | [|[m[] s
g Il = — : Bit
BRI R iﬂddressab!e
z Fir = —— : Memory
= R1 g
R0 Jos| [Ro_iof["ho i -
Figure 9.3: Internal RAM urgamzz’-lé"::;oﬂg"%z‘:‘ia%ﬁq&n
B.

Th|rt two 1/0 pins arranged as four g.bj orts: Four

ports are bidirectional-and can be used for input and
output. Some of the pins are multifunctional which provide
other functions along with input and output.

Two 16-bit timer/counters (T0 and T1): Each counter can

~ be programmed to count internal clock pulses, acting as a

timer, or programmed to count external pulses as 2
counter. This selection as well as mode of operation of

counter can be set by usmg timer mode control (TMOD)
register.

Full duplex serial data receiver/transmitter: Register serial
control (SCON) controls serial data communication, and
pins RXD and TXD are used to connect to other devices ‘
supporting serial communication. The serial buffer (SBUF)
TQMMM in serial communication
e terrupt
Two external interrupts and three intemal inte .p
sources: " Interrupt enable . il

I .
interru tislobese to interrupt processor. Timer

!! I l : E i II dt ans ltintErrupt
EIrllEiru t Rl ana tr nsr

OUEIHOW “F ECelV

(| 3|EIIIt_Errlal interr ts.

; Y 4 systems |199]

Micrncuntrollers in Embedde

Scanned with CamScanner

:Jzi;
P
Eﬁ.m)

k. ~ The 8051 oscillator and clock: It is the .

irg
generates the clock pulses by which all j terna| , Cuity, lh
are synchranized, Time for particular ; nnstru.oq1

can be calculated based on number of i hex tuf‘nﬂ /
required - by the instruction. For AT39851
frequency is 11. 0592 and its machine eycle COns
clocks. So, time penod for one machine ovele | Istg

C\‘dg,

12-12

the time period of single pulse whmh is equivy u%
1.085ps. ent
jii. 8051 Special Function Registers (SFRs)
They are a group of specific internal registers that g ;
'RAM and their address lie between 80H and Fry. Som: e
bit addressabie’ ‘which allows programmer to ok, eaS;Rs b -
X ¢
the register. The list of SFRs is given in the table below it
Table 9.2: List of special functllon registers
Name ' Description kY RAM Address| A ccess Long
A Accumulater OEOH Bit Addressag
B Register B, for multipli;apion and OFQH Bit Addresssh,
division
PSW |Program Status Word- 0DOH Bit Addressabl
" SP |Stack Pointer. 81H
DPH |Data Pointer Highe} Byte 83H
. DPL [Data Pointer Lower Byte 82H
IE |Interrupt Enable OA8H |Bit Addressate
IP |Interrupt Priority 0B8H Bit Addressabl
PO [PortO . 80H. Bit Addressatle
P1 |Port1 90H |Bit Addressatl
P2 |Port2 DAOH [BitAdd ressahle
i ; essable
P3 |Port3 OBOH [Bit Addr
PCON [Power Control 87H - 1
i ' it Addressi®
SCON {Serial Port Control, 98H_ ;
SBUF |Serial Port Data Buffer * , 99H
TMOD |Timer/Counter Mode Control '

|200] Insights on Embedded System

Timer 0 Low Byte
timer 0 High Byte

Timer 1 Low Byte

Timer 1 High Byte

pin Descriptions
pins 1 -8 (PORT 1)

Description

Timer/COU"tEY Contiol

Access Layg)

g)
8H BltAddressable
e Ve |

8AH
8CH
8BH
8DH

h-_-_‘_-_-_‘_"""'—--
--_-__—-'_"_‘—'——--

-__-__‘_‘__""‘—'—-——

SN

shese eight pins represent PORT 1 which can be used as
an

input/output port. Since it is internally pulled up
without any external pull up reg,stefs configuration,

pin - 9 (RESET)

it can be used

RESET pin is used to set different registers to its initial values. The
.. RESET pin must be set high for 2 machine cycles.

P1.0 [}
P11
p1.2 [
P32
P1.4
P1.5 [
P1.6 [
p1.7 T
RST [

(RXD) P3:0 [
(TXD) £3.1
(INTO} P32 [
(INT1) p3.3
(TO) P3.4
(T1) pP3.5
(WR) p3.6
-(RD) p3,7 [

XTAL2 [

XTALL [
GND [

1
2
3
4
5
6
7
8
9

10

12
13
14
15
16
17
18
19
20

Figure 9.4: Piu descriptions of 8051 microc

1T

R

40

8051

39
38
37
36
35
34
33
32
31
30

28
27

24

L

Mi;rocontmller

2
21

s in Embed

29 [

26 [
25 (3

23 [

1 vee
] PO.O (ADD)
1 P0.1 (AD1)
1 P02 (AD2)
1 0.3 (AD3)
1 P04 (AD4)
1 P05 (ADS)
—1 P06 (ADS)
] P0.7 (AD7)
= EANPP
] ALE/PROG
PSEN
— p2.7 (AD15)
— p2.6 (AD14)
p2.5 (AD13)
P24 {ADH{
53 (AD11
= 222 (AD10)
) p2.1 (ADY)

[:I p2.0 (ADS)

ontroller

ded Systems 1201

R

Scanned with CamScanner

These pins are bidirectional and multifunctional in nature. PQR

o) o -Rluivg doka
-;t%-) Trunsea b dabee -Pw“}lk b ol degiad

Pins 10 - 17 (PORT 3)

These pins together called Port 3 atre bi dircction-m a
multifunctional in nature. Similar to Eg_r}_LJLcan_bf:_USed as input of
output without any external pull up registers configuration, Besidas
1/0, it supports serial communication (RXD_and_ TXD}'—QF?_.QQR
interrupts (INTO and iNT1), timers (10 and T1), and control signale
(WR and RD) for external memory.
Pins 18 - 19 (XTAL)

These pins are used to connect an external crystal to provide Systerr
clock. '

Pin - 20 (GND, 0V)

. 5 Lo taken ks w
Pins21-28 (Port2) it Bt i o cabenbn L tnf e

may be used as an-input-or_output port similar to port 1.
alte_rn_ale_use_ni_pon;z_is_tg_nmuiﬂﬂ_a_high-nm
conjunction with the port 0 to address external memory.
Pin 29 (PSEN)

Program store enable (PSEN) is connected to output enable (OE) pin
of external memory being interfaced. It is an active low output signal,

When this pin is reset, microcontroller can read content of external
memory location.

Pin 30 (ALE)

vsed Yo dimotipler oddiey § doba

Address latch enable (ALE) is used to select address or data si_g'na'

that are required while interfacing external memory. It is active high
output signal and w i

(= ided by
port 0 is latched into the external address latch, This pin is also the
program pulse input during flash programming ‘

Pin 31 (EA)

External access enables or disables access of program from external
memory. It must be connecte

1202 Insights on Embedded System

: ikl Lo btz 03
4 L)?u“ v ARG neHa T @Lg‘i_-————-——

a0 ¥ ner ugeg D
ja L
bﬁp:h&fm? '"a" (o gy 0”"‘:“‘""1 Po %
pins 32:39 (POrt0) gin highy o (BB a0 (A0-M) i g

— ey M.’.P'_&»tgug,}_. B W
pORT 0 is a collection of opep, drain AL R P —B4)_whn e

bidirecyjo ;
c@ﬂgﬁr-"mm’@i‘w

CESSINg extern
memory- al

F]n 40 lvtl:: +5V)

in Cuny

Minimum Hardware Conﬁguratiun
power supply: Pin 40 is connected g *SVDC, Pin 20 s groundad, p
31 is connected to VCC, representin ' o

B the code is gec
essed from
internal memory. .

Reset circuit: Charging of capacitor make
two machine cycles on RST pin,‘After com
blocks DC causing RST low.

S RST high, which ensures
pletion of charge, Capacitor

a

i
[’1 :II 10pF
L o ATBIS51 i
2 2
1 —
B.2K
33pF
18
u 3
f—T— 13
33pF 2

Figure 9.5: Minimum configuration for microcontroller to operate

: 20pF - 40pF
Oscillator circuit: Ceramic capacitors of value t:“:ze,"c::;w i
are used as stabilizing capacitors. They act as loading cap

e a lower
adjust the crystal frequency by shifting the frequency o
value,

! o require ull up

Pull up circuit: Pins of PORT 0-are bt chmiﬁﬁ?{'
ircuj : d extern ‘ 3
Y i bt faped hele 8 l;\‘:dl“'@hu s
resistor & ;e

: FY meinlan Gah 203

P i ;ol}:::-:t;a!ers in Emhegﬂff sis:“e{n';ml_‘ e“

M gthar ovly (DNM'DE'.['I in with m‘ g < g P
LT""\..‘I’ AllihA mard 0 Yo BR visd ot -4 :

Lot

Scanned with CamScanner

Mnemonics

" Operation 5
T— e g

estription
9. 8051 lnstructwll Sets [Ri] € A

| =t
Different symbols are used in tha instsuction. Wiose Meaning [DPTR] ¢ A MOvy i
" F IS used
clarified below: Stack € [direct) data tg ar'.:icl TO‘-’E
#idata — represents 8 bitdata ; : ' ld"rrectl € Stack external RAM, RomF::
Rn — represents one of eight registers (RO R1,R2, R3, R4, RS, R, R7). A€ Rn,Rn € p and DPTR are ysed 1o
; hold '
@Ri — represents address pomlted by value of Ri. Ri can be either g)2_:._ (direct], fdirect address of RAM
orR1. ' ,
direct — represents direct byte addressable memory [A € [Ril, [Ri) € A
it —di i memory . ' S S
bit ~ direct bit addressable V m-lthmetlc Instructions
C~ Carry, A= Accurnulator, B ~ Register B _ ’ Operation 5 s
addril — 11 bit address, addrl6 — 16 bitaddre e“ 8 b OV Description
_ o thalf lc b i A€ A+Rn
lative address i biecy of Yo
relative address - squ 100*-&‘%“ 4 oo brovke - ; Ae :
R) 3 og ; fm 1 Jao\ﬁ r.d ADD A, direct A+ [direct]
i. Data Transfer Instructions NP D A, @Ri A< A+[RD
SN Mnemonics UPE"atlD" s Descrlptlon : | - ,\Q_ 1
ty: Mov A, @8RS/ 1 [mov AR A€ Rn (et TRy Bk ApIRCED (REAL
A e) .
Eq:Mov B 4™ | 5 IMOV A, direct A € [direct] L i wovel %td';‘% | A_DDC AN A€A+Rn+C = A:cumulator is one
‘ . [4 ;, direct A& ; of the sou
£y M.j_w1 A € [RI] LA MOV instruction g ADBGA, dire : A_-+ (eEt 48, el des;.ces‘as
: : By ;) AC AR+ C ination
'EJ MoV A B 4 Ivov A #dat A & data used to transfer datal ADBCA /ORI ' for every ADD and
-—-——.—-;—-i-—‘-——§ : Sroved in A A e . ¥ i
5 [MOV RN A, R |involving registers| . | 8 |ADDC A, #data |A € A+data+C SUB instructions
K o memory and| -Rn-
6 |MOV Rn, direct Rn € [direct] immediatadats - B 9 |SUBB A, Rn A€A-Rn-C
7 |MOVR, fidata [Rn < cata | | [RisuBRA dyea (A€ A-(deect-C ‘
8 |MOV direct, A [direct] € A fl . |11suBBA @RI C A€ A-(Ri-C
9 |MOVdirect,Rn - |[direct] & Rn - | [2|sueBAddata A€ A-data-C
10 [MOV direct, direct [direct] € [direct] 13]INCA - AEA+L ;
11|MOV direct, @Ri (direct] < [Ri] ; I |1|INCRn Rn&Rn+1 %
12|MOV direct, #data |[direct] € data ' | |15{INC direct -|(direct] € [direct] +1 .y
13 MOV @R, A "R} €A s - 16 fINC @Ri [Ri] € [Ri]+1 . -
14|MOV @R, direct . |[Ri] € [direct] 7lpeca - |A€A-1
15|MOV @Ri, #data [Ri] € data 18|DECRn i |Rn€Ra-1
16(MOV DPTR, #datal6 |DPTR € datalé . 19|DEC direct (direct] ¢ [direct] =1 -
17|MOVCA, @A +DPTR - |A € [A + DPTR] 20|DEC @Ri - [Ri] € [Ri]=1
J PTR+1
18|MOVCA, @A+PC A€ [A+PCQ) MOVC is used to readlf |22|INCDPTR DPTR € OPTR
19|MOVX A, @Ri A € [Ri] data from code 22|MUL AB A€ Lawer Bite —
0 ‘f,;ij‘*r{ 20|MOVXA, @DPTR |A < [DFTR] memory (ROV) B¢ Heter 2051
Fo & ; —_ 5
For g - : - : llers in Embedded SYSte™
: |204 | Insights on Embedded System : : Microcontro

. I

Scanned with CamScanner

on

SN|Mnemonics Operation Description
23|DIV AB A € Quotient

B < Remainder Tl
24(DA A Decimal Adjust accumulator 4?? :‘::;%”f‘;}“glf::?
Logical Instructions Cromber*td Ben ‘
SN|* Mnemonics Operation ° Description
1 |ANLA, Rn A € AANDRA
2 |ANLA, direct A € A AND [direct]
3 |ANLA, @Ri A € A AND [Ri]
4 |ANL A, #data A € A AND data
5 |ANU direct, A (direct] € [direct] AND A
6 |ANLdirect, #data |[direct] & [direct] AND data |Logical AND, og o8
7 |ORLA, Rn A € AORRn XOR allows girecf
8 |ORLA,direct |A € AOR [direct] SRt
9 |0RLA, @Ri A€ AOR [Ri] ::,T i
10 |ORL A, #data A € AORdata-
11 |ORL direct, A [direct] € [direct] OR A
12 {ORL direct, #data |[direct] € [direct] OR data
13 [XRLA,Rn A € AXOR Rn
14 [XRL A, direct A€ A XOR [direct]
15 [XRL A, @Ri A € A XOR [Ri]
16 [XRL A, fidata A< AXOR data |
17 |XRL direct, A [direct] € [direct] XOR A
18 |XRL direct, #data |[direct] € [direct] XOR data
19 [CLRA A€0
20|cPLA A€A
21|RLA Rotate A left
22 |RLCA Rotate A left through C
23|RR A Rotate A right
24 RI.J.C A Rotate A right through C
25 |SWAP A Swap nilgbles of A

L(J/b iF

P,

it manipulation and Program Branching 1nst;

Operation

C€<0
bit € 0-
C&1
bit € 1

o8 o

bit € biv

C € C AND bit
C < CAND by
C € CORbit
C < CORbit'
C € bit

bit € C

Jum'p- fce1
JumpifC€ 0
Jump if bit € 1
Jumpifbit €0
Jump if bit € 1,and b € 0
Absolute jump to routine
Long jump to routine
Return from subroutine
Return from interrupt
Absolute jump. 3
Long jump

Short jump

*|jump relative to DPTR
Jump if Ais zero

jump if Ais not zero

{
’gﬁ‘iﬁﬁg« 22 | AIUMP addr11

28 |CINE A, direct, el
29 |CINE A, #data, rel -
|30 |CINE Rn, #data, el
31 | CINE @Ri, #data, rel
32 |DINZ R, re}
33 | DINZ direct, re!

Comp
equal

Decre
7ero

_renllors |

“within 128 to +127

n gmbedde

Uctiong
Descriptign

Short jumps must be

bytes of the contents
of PC

Long Jumps and calls
can be used for any
location within 64
Kbyte address space

Absolute jumps and
calls can be used for
address within
2Kbyte range

are and jump if not

ase and jump if not

Joystems. 1207\

Scanned with CamScanner

gembly La;?guage Programming
F assembw ‘anguage. program consists of series g
Ssembw language instructions angd directives
o sﬂon represents the operation to be carrieg out by
g ' e
| assembly Language Programming Foryma
23 ,c_\r;f‘l 1nstrUCti°f‘ is composed of mnemonic followed _':;y one, two c-:r
ks Mnemonic repr?sents th.e actual operation to be done which
gs are data items being mlanlpula‘ted.l Directives are used to give
eral‘1 < to the assembler. Generally used directives are DB, ORG, END
ECtEU. The DB directive is used to define 8-bit data. The ORg repr:esent;
JE g‘mﬁing of the program’ address while END' represents the end of
he bem The EQU directive is used to define constant within a program. The
u i;aers- Jsed must be followed by H to represent hex value otherwise the

e will be taken as decimal.
o

o

‘Addressing Modes in 8051

f stateme :
i Immediate -Addressing Mode K nts which
ssembly ‘anguage

‘The source operand is a constant value which must be the processor

by # sign. It is used to’load direct values into regi
example, MOV A, #25H will assign 25 to register A,

Preceqq
sters, pg

ii. Register Direct Addressing Mode

The operand is a register which holds the data

manipulated. For example, ADD A, R5 will add content of
RS, and store back in A. i

to be
Aan.

iii. - Register Indirect Addressing Mode
- Register is used to point the effective address of the o
Registers RO, R1 and DPTR are used as pointer registe
must be preceded by @ sign. For example, MOV
represents copying the contents of the address in R
accumulator, '

iv. Direct Addressing Mode

Perang,
rs which
A, @Rro
0 to the

" The assembly language program, in general, is written using following

The operand represents the actual ad'dres-slof RAM in the ["3be"."] : Mnrin;?lmic lugez:;i;]- [fi:mj:n::l‘.m
- . 5} 1

instruction. For instance, MOV A, 80H moves the data.of 80H HERR ' o) p

- . e _-_-'--_-h—-__""—-- i *

into accumulator. . wample 1: .

Read the content of port-i and port2, OR those contents.and store
the result in external RAM location 0310.

ith address 90H) and Port2 (with address
\so be

v. Relative Addressing

A relative address mj‘offset is added to the PC to form the aﬁ{yal_
address. Generally used in jump instructions. - '

Problem Analysis: Portl {w
vi. Absolute Addressing Mode

MI0H) provide eight bit dat:-i, so after OR operatioﬁ th? final res:n: :gl:re o
i eight bit. Hence, single byte memory location 18 eno:g ks
rsult. However, to storé the result in external RAM, th.e a rson i
1AM must be loaded into DPTR register and MOVX Instruct

wed for data transfer.

In instructions, 11-bit or 16-bit a'bsolute?address is specified as
the operand. ACALL and AJMP instructions use 11-bit: addres_s‘
while LCALL and LIMP use 16-bit address. - 4

vii. Indexed Addressing Mode

. ; Source Code: -
Index value or-displacement is added to the base address to

generate) the effective address of the operand. For instance, ORG 00H- : & data of port1 16 A 5

MOVC A, @4 + DPTR uses“indexed addressing mode. The MOV A, 90H. el ents of A with port2, 21 swraimss

content hointed by-,SA{'# DPTR) address of ROM is copied t0 ORLA,QAOH ~ ;ORthecon sint the external RAM addre

accumulator, -_ R - MOV DPTR, #0310H « DPTR uS‘_’-d e fAtoRﬁMiocatiun
MOVX @DPTR,A ;MOVe the content ©)

. pointed bY DPTR

e ~ ded Systems 12091

" Scanned with CamScanner

" Add the content of internal RAM location 29H and portl, and store
the result in RAM locations 30H and 31H in BCD form.

Problem .Analysis:' In BCD, the largest possible value tan be 99, sothe
maximum value of final result will be 99 + 99'= 198, Hence, two bytes ©
memory is required to store the result. To solve this, ADD instruction must
be used to add two BCD data and DA instruction after addition. However;
DA jnstruction is not required for upper byte of result as it is less ﬁ_}anlll}-
But, had there been more numbers causing upper byte to exceed moré thaf
9, DA would have been required for upp'er byte as well.

|210] Insights on Embedded System

coak:

H, #00H 30] &« ;
MOV 3-0 ! , 301 Do’ass'gnszerotomemcfvlocat' :
1on 30H

;A€ [90], assigns content of Portl to

;accumulator

JAECA

(291, adds content of accumulator and
;location 29H
'; Adjust the content of accumulator to BCD form

1 [31] € A, moves the lower byte or result to 31H
;address of RAM

wl 6- 00, reset accumulator
: A € A+[30] +C, to extract the value of carry
. :[30]) € A, move upper byte to location 30.

f datﬁ of RAM location starting from address 20H.

tore lower byte at 30H and upper byte at 31H.

result in two bytes of data. S0,
value in register must be incre

Example 2: : ' ﬁfce H
Read the content of internal RAM locations 27H and 28H, 544 e ORG 00
and store the result in RAM locations 30H and 31H. th
Problem Analysis: The largest possible value at memory |ocay; : MOV i o
" be FFH, so the maximum value of final result will be FFH + FEy -_(:]ns ca
Hence, two bytes of memory is required to store the result. Tg soly 1F.E ‘ 29H
ADD instruction must be used to add two data while ADDC or JNC/)c % this ADD A
used to add the carry. fanb '
. Source Code: - DAA
ORG 00H . MoV 31H, A
MOV 30H, #00H ; [30] € 00, assigns zero to memdrv location -30H
MOV A, 27H ; A € [27), assigns content of location 27H to MOV A, #60H
. y | ;accumulator _ ADDCA, 30H
ADD A, 28H ; A € A+ [28], adds content of A and memory MOV 30H, A
;location 28H END
MOV 31H, A : [31] € A, moves the lower byte or result to 31H.'
) ' :address of RAM . - _ pample 4:
7 ; tes O
'MOV A, #00H ; A € 00, reset accumulator Add 10 bytes
ADDC A, 30H ;A € A+ [30] +C, to extract the value of carry
. MOV 30H, A : [30] € A, move upper byte to location 30. omplex, so RO'OF
; c » !
END location. The register (RO or
consecutive locations. The fina
Example3: .

 _ suielowerbitegtSMAN IR
f direct RAM address can make program

Problem Analysis: Use 0
R1 can be used to poin

t the one byte address of RAM
nted to access data of

0 bytes of data can
n and

R1) then can be increme

| sum after addition of 1 &
carry must be checked after additio ;
mented accordingly when carry 1 resulte

after addition.
Source Code:
e o - starting address of RAM
MovRo,#20n RO€ 20H, 3ssiEN"E
| : ;.t::i oM, counter foF 10bytesef d:ﬁ
M_O.V 5 A0RD | & O0H, ysed for 1OWer byt e it
A0 ; ::r & 00t ysed for uPPEl byte 1€V
MOV R7, #OOH :

Scanned with CamScanner

, @A + DPTR
HOME; MOVCA @A ;A €'- [A+DpTR), Ioad ROM content of
Mov a ' . ’ ' ; atdress (A + pp
HBRD i A € [RO], move content of RAM location A : jum oA
N i] ' pouto ;
;pointed by RO to A iz EXI- . Floop fast Chara(:te; Is d
ADD A, Rg ' i ; Whlch is0 ected
: i A€ A+ R, adds data of FRAM focation in gy ;
siteration MOV P2, A P& A, move content of accumulator
INC NEXT 5 o ‘ ;
i ; checking if carry is generated after additiop : port 2
R7 R ; DPTR ;
i R7 € R7 + 1, carry after each addrtmn is addeq INC DPT € DPTR+1, to point to next character
. ito form upper byte . ; of ROM
NEXT: .
XT: 5)MP HOME » Continue the loop
Mov %= - : ' '
N Re, A i R6 € A, move partial sumto R6 " ORG 300H
R RO |
i RO € RO + 1, increment the address of RAM to DB - I ‘ASSEMBLY PROGRAM”, 0
- jaccess next byte | EXIT: - ‘
ZRS, HOM o
1E decrease R5 by 1 and jump to HOME |f R5 is “NOP
o not equal‘to zero : END
5 OH, :
" s re 92.2 Delay Calculation in Assembly Prugram
) ;address 30H ' '
MOV 31H, R7 . 31) - Actual time of the execution of instructions can be determrned bv
i [31] €R7, move the upper bvte tomemory making use of the operating frequency of the microcontroller and machine
;address 31H tycles required by the instructions. The total machine cycles required by the
END nstruction is multiplied by time duration of one machine cycle to calculate
the total time. 'I
-Example 5:

DELAY: :
(m)
i #r54'|H 00 times

) rm

AGAN: ' MOV R3, #OAH ;MC=1, executes 100 tim N

AGA: DINZR3,AGA ;MC=2 executes 100 x10=

h DJNZ R4, AGAN sMC=2, executes IDthrnes

| -MC=2, execmes‘ltlme

ASCI! character string is stored in the program memory startlng at

'MC 1, executes only once
300H. Send each character to port 2.

Problem Analysis: Since the data is stored in the program memory
(ROM), DPTR must be used to point the address of ROM. Using MOVC
instruction, the data can be retrieved and furthér mampulated as required.

cle
Source Code REY . 0592MHz and one machine &
In 8051, crystal frequen s
) GRG ool - (MC) is equal to 12 clock cycles- =
MOV DPTR, #300H ; load address of data into DPTR S0, 1 MC = 1.085ps. - 1+ 1x£9 + 2000
: ine = ; X

HOME: ' Total . cycles in DELAY subroutin _
CLRA s A £ 0, clear the content of A

2x100+2=2303
2303x1085115 g

Total time duration =

|212] Insights on Embedded System

Scanned with CamScanner

Godes Cotrent Qnmers
lMode: Corvent \eav®
Interfacing with Seven Segment Display

Seven Segment Configurations
i.

9.3
1,

Pin Configurations

The figure shows the pin configuration of seven segment displa .
which consists of 10 pins; eight pins to control the LEDs ang tWOI
common pins which are grounded or connected to VCC baseq
on common cathode or common anode configuration.

N tygg

com . gf ab 9 o o
l | | | : l | l | l Figure 9:8: Common cathode configuration
a ' , 3 :
o . == ii. Lookup Table of HEX Equivalent
i I] g [l b . ﬂ For com mon anode configurations, low logic must be provided
' - to the pins of the seven segment display to glow a particular led.
e” [lc [q The equivalent hex values are sent through the port of
©od ?1 - 2 microcontroller. However, designer must be aware of the
ﬂ l | | : driving circuit which should provide the equivalent hex to the
: . | l l | | pins of seven segment display.
© " com "+ ed ch .

Common Ancde Conﬁguratidns For

Figure 9.6: Pin configurations of se_veﬁ segment display

: Common
i ' : 1 inated
ii. Modes of Configurations i Individual LEDs lllumina Cathode
There® are two modes of configurations: common anode. Digits HER ;_E'fi—-
.configuration and common cathode configuration. In common HEX
~anode configuration, anodes of all LEDs are connected together s

oxc0 | O3F |
¢ 0x06
os |00 |

oad | 068

to form a common pin which must be connected to high logic
voltage. In'common cathode configuration, cathodes of all LEDs
are connected together to form a common pin which must be
connected to low logic voltage. - ' ' ;

BER]

b L

Figure 9.7: Common anode toﬁﬁgqratian o systems

trollers i Emb
Scanned with CamScanner

— atawnrl

Interfacing Seven Segment) ' _
.Before connecting the seven segment display to the port o
microcontroller, the current requirement of the seven Segmen
display along with the source current and sink current capacity of thé‘
microcontroller must be examined. However, it is always bettq, to
use the driving circuit rather to connect savan segment-display
directly to the port of microcontroller.

i. - Hardware Connections

Any port of the microcontroller can be used to connect tq lhe.
seven segment display through the driving circuit. The driving.
circuit may be in the form of an JC which can sink or soyrce high'
current. The circuit configurations can vary depending on ‘the‘:-
designer. IC ULN2003 is. an example of a current sinker while |c.
L293D can be a good source of current for driving circuits,

PLO i a i '

Driving
Circuit .

Microcontroller

P1.7 h

Figure 9.9: Connection of common anode seven segment with
microcontroller”

ii. Coding Implemenfations

In assembly language, simple MOV instructions can be used to i
transfer HEX value to the seven segment dis;}lay. For example,

MOV P2, #92 will display the digit 5 for common anode

configurations, Using C programiming language, simple

assignment can be done. For example, P2 = 0x92; will display

digit 5. However, appropriate defay or r.epetition- mechanism

must be used to ensure that the. digit display-s for certain

duration and becomes observable to the designer or user.)

|216] Insights on Embedded System
1'5.- e

1
plem

jutior*

GOLUTION TO IMPORTANT QUESTIONS °

le.write an assembly and C language Program to Benera

- te a pyl
50% duty CVFle at pin P2.3 of 8051 microcontroller, ke of

oroblem Analysis: Duty cycle of 50% represents equal ON and Off
{ime at pin P2.3, so an arbitrary delay is required after setting P2.3

and ?ﬁer resetting P2.3. Blo\)d Voribley ot shrad tn RARY

ode: ! ;
Sourcego . In C programming language
ORG Qe Hinclude<at89x52.h>
LR P2.3 :
void delay(unsigned char x) :
Back: - { e vasia!® *3“::
CLRP2.3 . int i,j::é-‘/ l“i.-. sock of gt
LCALL DELAY for(i=Oji<x;its) -
SETB P2.3 i
. LCALLDELAY , AT
.« (IR Bk void main()
ORG 300H {
DELAY: P2_3=0; '
MOV RS, #64H while(1)
AGAIN: MOV R4, #OFFH {
AGAN: MOV R3, #08H 52[-3 E;}
ay(50);
AGA: DINZR3, AGA : P; ; -0; : -
| DINZ R4, AGAN delay(50); 3
DINZ RS, AGAIN }
RET L}//
END '
Problem 2; onnected t0

1bya SWITCH whichis ¢

d by ON/OFF status of SWITCH.

Control the LED connected at 21!
P1.3. ON/OFF status of LED is defin®

sMutiom meni pmblern in which

. . ta move in

Problem Analysis: This is 3 5|m!3|:°::m"er i another P!

_ . -of micro ;

a bit from one pin P13 © configur
P2.1. The code can vary based o -

_ jveri below:
configuration used. TWO cageiat=

signEd to

ation @n SWITCH

I

systems 127

Scanned with CamScanner

i d
ocontrollersin _F.mbed

CASE I: The SWITCH will generate high logic when pressed g4 gource Code: # Includecatgoysy py '
i |o.w wher.\ high logic is assigned to pin 2.1. § : 00H # define ouT Pl‘_?
will g ; - e g ORCT CLR P1.7 # c!eﬁne SW P17
Source Code: mr}cludet«:at x52.h> : - void dEIav(unsigned i
'ORG O0H void main() - SET : {)
4 { | 4 ’ i .
CLR P2.1 P2.3=0; : BP-CK' MOV C, P1.1 int ':-Ja
SETB P1.3 P13=1; | S for(i=jicx;i++) ;
- while(1) | "JEBRCK for(j=0sj<1275;544,
Back: ¥ : SETB P1.7 p :
MOV C, P1.3 P2 1=py 3 § " LCALL DELAY void main()
o : W26 D LCALL DELAY - -
SIMP Back J e LCALL DELAY s
END ' il
i . : Vi : i <1 CLR P];.? while(1)
CASE 1I: The SWITCH will generate low logic when presseqd and Legf | .y LCALL DELAY { ‘
will glow when high logic is assigned to pin 2.1, . d“-}[aj‘t SIMP BACK E{f[SW ==0)
Source Code: Hinclude<at89x52.h> ouT=1;
ORG 00H void main() ORG 300H delay(300)
CLR P2.1 { DELAY: . - ouT=0;
5ETE P13 " P2_3=0; MOV RS, #64H delay(100);
Back: : y — . .
) MoV c, P1.3 Plh-.f {‘1)1 AGAIN: MOV R4, #OFFH }
» - i a
CPLC ? = _ AGAN: MOV R3, #08H i
MOV P2.1, C P2_3=1p13; . AGA: DINZR3, AGA }
SIMP Back '} : ' DINZR4, AGAN .
i 2 DINZ RS, AGAIN
Problem 3:) _ 1 RET
Using an assembly and C language program, generate a pulse of . END
in P1. i 1is ONA—
75% duty cycle at pin P1.7 when the switch connected to P1.1i oblem 4
Solution:’ '

fof enerate a count
Write an assembly and C language ;?r_ograrl:J:: cgnnvnun Cathode
from 0 to 9 using a seven segment display: =
status of P1.1 must be checked

—_“onfigurations. -
at P1.1 after button is pressed; [Plution,

Problem Analysis: Duty cycle of 75%
more than OFF time at pin P1.7. The
continuously, Based on the logic level
delay in case of ON time must be thr
time. In the code below, we assu
ground wher pressed and P1.1
pressed. So, a low logic at p1.1 will
appropriate delay,

represents ON time three times

ee times more than that of OFF;
me the switch connects P1.1 10}
Is connected to VCC when 10
generate the required pulse Usi"é;

igned
alues are di rectly assi8

v h digit display

i HEX
Problem Analysis: The equivalent delay after ac

: rtain
one by one to the required pOI.'t. geof count,
€an be placed to control the spee

|1218| lnsights on Embedded System

Scanned with CamScanner

Source Code:
ORG 00H

MOV P2, #00H

BACK:

MOV P2, #3FH
LCALL DELAY
MOV P2, #O6H

_ LCALL DELAY

MOV P2, #5BH

- LCALL DELAY

MOV P2, #4FH
LCALL DELAY
MOV P2, #66H
LCALL DELAY
MOV P2, #6DH
LCALL DELAY
MOV P2, #7DH
LCALL DELAY
MOV P2, #07H
LCALL DELAY

MOV P2, #7FH
LCALL DELAY

_ MOV P2, #6FH

LCALL DELAY
SIMP BACK -

ORG 300H

DELAY:

MOV R5, #64H

AGAIN: MOV Rd, #OFFH
AGAN: MOV R3, #08H

AGA:

DINZ R3, AGA

DJNL Ay MASTN
. DINZRS, AGAIN

RET

eND y
NATIVE CODE:

roble™ Analysis: The HEX_VE!!ugs are ot directly assignéd rather
" memory and accessed using data pointer (DPTR), DPTR i useq 1,
. the HEX values and MOVC instruction must be ysed to access th
'ttv,ueS- MOVC uses accumulator to represent offset as wefl as data Thz
:Zf accumulator is added to DPTR to represent the address of me;ﬁory

=
e

nally the data is stored into accumulator.
1 .
rce code: | #include<at89x52.h> 2
ORG 00H ; # define DISPLAY P2 !
MOV P2, #00H ' void delay(unsigned int x)
MOV R6, #00H £ 5 g
unsigned int i,j;
MOV DPTR, #DIGITS for(i=0ji<x;i++)
MAIN:
MOVCA, @ASDPTR | (oo ol - (0x3F, 0406, 06,
MOV P2, A . OXAF, 0x66, 0x6D; 0x7D, 0x07, OXTF,
‘LCALL DELAY 0x6F}; - ,
INCR6 void main{) '
CINE R6, #0AH, MAIN | {)
' unsigned char i;
DISPLAY = 0x00;
MOV, oo while(1)
SIMP MAIN ' {

’ for(i=0;i<1ﬁ;i++l
DELAY: ' , ,
~ MOV-R3, #OFOH | pyspLaY = digitsll

CDELY: . MOV R2, HOFAH
DEL2:. - pjNzR2, DEL2 - -
DINZ R3, DELL /

RET

delay(100)

satems 121

12201 Insights on Embeddad Suctam

i l'.aedded |
ocantmlliers in Em \

Scanned with CamScanner

DIGITS;
DB 3FH, 06H, 5BH, 4FH, 66H
DB 6DH, 7DH, 07H, 7FH, 6FH
END
Problem 5:

A PUSH BUTTON:is connected to P1. 1, increase the COUnt in
SEGMENT when the button is pressed.

‘ Solution:-
Source Code:_
ORG O0H
SETB P1.1
MOV P2, #00H
MOV R6, #00H

MOV DPTR, #DIGITS
~ MAIN:

MOV A, R6
MOVC A, @A+DPTR
MOV P2, A
MOV C, P1.1
JC MAIN
LCALL DELAY
INC R6
. » CINE RS, #OAIH, MAIN
MOV R6, #OOH =
SIMP MAIN
DELAY: - .
MOV R3, 0FOH
MOV R2, #OFAH
DINZ R2, DEL2
'DINZ R3, DEL1

DEL1:
- DEL2:

RET

 # define DISPLAY p2

R

#include<at89x52 h>

define SW P1_1

void delay(unsigned int X)
unsigned int Li;
for(i=0;i<x;i++)

} : fon{]=0;1<1275;j++);

chardlgtts[] {0x3F, 0x05 0x58,
Ox4F, 0x66, 0x6D, 0x7D 0x07,
Ox7F, Ox6F};

void main()
{ ,
uhsigned'cﬁar i=0;
DISPLAY = 0x00;
while(1)
{. - " .
DISPLAY = digits]i];

if(SW ==
{
i++;
if (i>9)
i=0;
delay{20);
}

|222] Insights on Embédded System

SEv

pB 3FH, 06H, 5BH, 4FH, 66H

DB 6DH, 7DH, 07H, 7FH, 6FH

- ".'T‘-".;;::.“? .

gND

mﬁ: . A ' i
fe Usmg two seven segment displays build a down counter which
counts from 99 to 00. Make appropriate assumptions wherever

necessa¥-. [Trme Mu'lluileuuna % used)

T tion:
juti pescription: Two ports can be used to display two digits. However, it
is better to use 2 single port for both seven segment displays and
control their display through control lines. Two digits separately are .
- sent at different instant of ‘time. Corresponding seven segment
display must be enabled while the digits are sent at different instant.
However, the time duration between sending of lower digit and
upper digit must not ‘be high. High delay can lead to flickering effect
which causes both digits to be disptayed one by one rather than
simultaneously. Also the speed of count can be controlled by using
appropriate repetition of each display o_f hot_h digits.

Source Code:
ORG O0H . |
. MOV P2, #00H !
MOV R6, #09H counter for lower byte
MOV._R7, #09H . counter for upper byte
MOV’ RS, #07h + to control; speed of counter
o -.Ioads the starting address of hex code

MOV DPTR, #LABELL
. . list to DPTR

MMN; lower
I i W
Eraris . activates 9™ display 10 display 10
.0 ‘
SETB P3 i -
. deactivates thel

CLRP3.1 . ;

i ded systems 12231
. Mlcrocontrullers in Embe

il

Scanned with CamScanner

jent code in C Language

LCALL DELAY - uiv? gscription within infinite loop; the first logp js
MOV A, R7 " the second 100p-is used to select the | Used t0 seloct the
: activates 17 display ¢ byte Ower byte ang the thi
SETB P3.1 ; ¢ e 410 control the speed of count, . e third
CLR P3.0 ; deactivates the 2™ display S use
LCALL DISPLAY e code: .
LCALL DELAY _ #'m.;'.ude<at89><52-h>
4 define DISPLAY P2
: titi f i
DINZ R5, MAIN ; repetition of same display tg Contrg| define SELO P3.1
; ; speed #
MOV RS, #07H _ # define SEL1 P3.0
DECR6 _ ;decrease'value of R6 Joid delay(unsigned int x)
CINERS, #-1, MAIN ; compare unless R6 becomes less tha {
n
s ' RERE - ' unsigned int 1, j; %
MOV R6, #09H ° i -
DECR7 for(i=0;i<x;i++)
CINE R7, #-1, MAIN for(j=0;j<1275;j++);
MOV R7, #09H - } L
SR AR char digits[] = {Ox3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, Ox7D, 0x07, OX7F,
DISPLAY: A
, - . Ox6F}; '
MOVC A, @A+ .
: @A+DPTR ; load HEX value to accumulator from void main()
. . ; memory :
MOV P2, A ; sending HEX value to SEVEN SEGMENT :) !
T ' ; through P2 ' chari, j, k;
RET) ' DISPLAY = Ox00; -
' while(1) .
DELAY: . ; () '
. MOV R3, #0FOH (% ‘ for upper byte
DELL: MOV R2, #0FAH for(i = 9; i >= 0; i) /1 00p
DEL2: DINZ R2, DEL2 K) :] "~ // loop for lower byte
i=9:i>=0;]
DINZ R3, DEL1 . for(j=9;j>=0U
RET s { 3 unt
// oop to control the speed of €24
forlk=0; keTi k)

LABEL1; ; '
. ; represents starting address of HEX

— i value list
H, 06H, 5BH, 4FH, 661, 6DH, 7DH, 07H, 7FH, 6FH

{ il
pispLAY = gt

END

. 5 __--_-_-""-—-__ : -
1224 Insights on Embeddeq System —

Scanned with CamScanner

MOV TLO, #33H

i COunting Starting poir

Nt set

SEL1=1; SETB TR.l +Starts the timer (TFLis gt t:tl533

| - BACK . eI
delay(5); o BACK: JNB TF1, _ »Jump tg BACK i TF1 bit is not Set }
DISPLAY = digits[i}; _CLRTRL 5 StOPS the timer

0=1; ' ' N

52';1 : CLRTF1 ; ;Ieatr the timey Cverflow flag 1y bit)
SEL1=0; '

; RET
delay(5);

END

M i}

tr}bl Ik -
‘ Ji’ilenerate a periodic wave having period of 15mis and duty cycle 20%.
in 8051 using assembly. programming. The wave should pe

pro#uced at pin zero of port 2 {PZ.CI}, the XTAL frequenq is
11.0592MHZ and use Timer 1 in mode 0. (13-bit timer mode), -

‘Assemblycoding for given p

Using 8051 instructions, contro| rate of blink of
two switches at P2.1 and pz.; (one switch to in
plink, another to decrease the rate of blink}. [207

LED at pin 1.1 by
Crease the rate of
bBaishakh) - -

roblem statement is as below:

ORG 00H ‘
[2076 Bhadra) P11 . ; making P1,1 as output pin
’ : CLRP1
Solution: ; : 1 SETB‘PZ-I o ; P2.1 as input
" ORG 00H — ' ; i
Period = 15ms) SETB P2.2 iP2.2as mp,Ut -
_ CRP20 Duty cycle = 3/15 = 20% : MOVR2, #80H ; defines initial value for delay (or blink rate)
MAIN: _ On time = 3ms, Off-time = 12ms -)
SETB P2.0 For Mode 0 timer (13 bit timer): |t ' :
FFF, FAST:
LCALL DELAY counts from 0000 to 1FFF, We n_eed B
to set the values of TH1 and TL1 to LCALL BLINK
CLR P20 generate delay of 3 ms. ol
LCALL DELAY Here, 1FFFH = 8191 in decimal,] MOvC, P21
LCALL DELAY [T: ce;lcu‘ta}'ii st;;ting paoint of count | INC SLOW ‘
192 - x)*1.085us = 3ms
. LCALL SPEEDUP
LCALL DELAY x= 5427 in decimal (1533 in Hex) .
LCALL DELAY Hence, TH1.= 15H and TL1 = 33 ow:
SIMP MAIN must be loaded to generate 3m§- MOV ¢, 2.2 ’ e
INCFAST
DELAY: . LCALL SPEEDDOWN] .
MOVTMOD, #00H to configure timer in mode 0 SIMPFAST . -))
MOV TH1, #15H DLy,)
. . : ' systems 4
. ________._.-—'I , —lers in Embedded
1226] Insights on Embedqed System ~ Microcont A

Scénned with CamScanner

MOV A, R2

MOV RS, A
13: MOV R4, #3FH
12: MOV R3, #08H
1: DINZR3, L1

DINZ R4, L2
DINZRS, L3
RET
SPEEDUP:
MOV A, R2
SUBB A, HOAH
MOV R2, A
RET
SPEEDDOWN:
MOV A, R2
- ADD A, #0AH ¢ g
MOV R2, A R
RET
BLINK:)
SETB P1.1
'LCALL DELAY
CLRPL1
LCALL DELAY _
RET
. END

—— ¢
Problem 9: .

Desi s O, :
esign a circuit with 7 segments display which is used as a counter

watch which display second and minute. [2076 Baishakh]
Solution: = |

0

To solve the gi ; :
- ti?e glven problem, we need four seven segment displays;
‘.No| or minutes and two for seconds. And it can be solved using
s ith o e e

ingle part along with time multiplexing concept, or another method

e

1228] Insights on Embedded Systam

: - N segment gj
siready implemented tlme-multimexing concept i Psplavs. We haye
me concept can be used to imple roblem 6, 50 e

sd : 5 . ment this r
However, We will be using separate port for ea;, oblem a5 ey,
gisplays in this problem. Seven segment

The_circ}lit configuration and respective code- -
that is used 35 3 counter watch is 5 shown b:
represented by port PO (upper byte) and P1 (jower p :
second is represented by P2 (upper byte) ang P (o yte) while
should be used with pull up registers Which is sho
as well. Also, pull up registers are required for all y
which is not sho»\{n._ '

€gment diSplay
low. Minute s

wer byte). Portg
Wn in the diagram
sed pins of PORT 0

#2EASH
AN =
DITEY

¢ and second

Figﬁre: Counter waic
ORG O0H

h using seven segment for minut

MOV PO, #00H
MOV P1, #00H
MoV P2, #00H
MOV P3, #0OH

— g ; .

_—

Scanned with CamScanner

MQV R2, #00H
MOV R3, #0OH
MOV R4, H00H

MOV DPTR, #DIGITS - —

‘ MSBIGI’IN: B -
MOV A, R1
MOVC A, @A+DPTR ~
MOV PO, A
LSBMIN: MOV A, R2 .
MOVC A, @A+DPTR
MOV P1, A
MSBSEC: MOV A, R3
* MOVCA, @A+DPTR
MOV P2, A
LSBSEC: MOV A, R4
~ MOVCA, @A+DPTR
MOV P3, A
LCALL DELAY
INCRG O
CINE R4, #OAH, LSBSEC
MOV R4, #00H
INCR3 _
CINE R3, #06H, MSBSEC
MOV R3, #00H
INCR2
CINE R2, #0AH, LSBMIN
- MOV R, #004
INCR1 .
CINE R1, #06H, MSBMIN
MOV R1, #00H ‘
SIMP MSBMIN

1230 Insights on Embedded Svstam

MOV RS, #OFOH

Use registers RO, RS, R or

opui: MOV RS, HOFAH ﬁ; in delay routing 4 R1
+R3,and R4 3 :
- 3 ZR6, . ! re alread
DEL2: DJN DEL2 N USe in mainy cod Y
DJNZ RS, DEL1 ‘
RET
DIGITS: .
.. DB 3FH, 06H, 5BH, 4FH, 654
DB 6DH, 7DH, O7H, 7FH, 6FH
END
Fmblem 10:) o
Write an assembly code to blink the 8 led connected at port 2 of
8051 microcontroller. [2075 Baishakh)-
Solution: |
' ORG 00H
MOV P2; #00H
MAIN: MOV P2, #OFFH
~ LCALL DELAY
MOV P2, #00H
LCALL DELAY
~ SIMP MAIN
ORG 300H ‘
DELAY: .
MOV R3, #0FOH

DEL1: MOV R2, #OFAH

DEL2: DJNZR2, DEL2 -
' DINZR3, DELL

RET

END

. I ‘. 11|
. rollers in Embedded Systems |

aai~rncO nt

Scanned with CamScanner

DEL,&Y:

11: . = . #
Problersnhuw the connection of LED at P1.7 and switch at py 3 ot MOV R3, #OFCH
microcontroller. Using an assembly language, generate 5 Puls pELL: DN ¥z, H#OFAH
" witch . L]
75% duty cycle atpin p1.7 whenthes \ |Fc at P1.1is ON, DEL23 DINZ R2, DEL2
2
(2074 Bhag, DINZ R3, DELL
- RET
Solution i
Lt POOATY [
FUVADY =22
B s Pﬁiiﬁi ﬁ
PO AT 25 19
b i 8 oplert 2
S pst T LR Write an assembly language programming for 8051 micracontroller
P2 2L to read the data from switches connected to port 1 and send it to
. e Wi 2 for display in LED. :
Rt 2lmm iy 07 port [2073 Magh)
0R n'lu-_ HE PRaATz 2 e
* Rt plution:
swi o A ORG OOH
erom 30
o Hrmos w3 MOV P1, #OFFH
-L : “p2en L PRE . /
B Sl Tk MOV P2, #00H
- R2 -:— PLLCEIR NSO PI&TY _.._‘; ;
| m@mm] P hcomos s L Main: r
. . s P MOV A, P1 '
Assembly coding for given problem is: ' ' MOV P2, A
ORG 0OH ’ I'SJMP Main
SETB P1.1 : ~ END :
CLR P17 _ R il
Problem 13: utes a
LooP: MOVC, P11 ! . yage that comp
: ' : Write a short program in assembl l:rn:" e: (2071 Magh]
JNC LOOP precise 2.5ms delay using 8051 microcon
SETB P1. .
SRL7 Solution:
LCALL DELAY ' - it : ks .
peeded. nce
LCALL DELAY “3& e OV R4, #6 M Mc=1, executes o;:)v;mes
LCALL DELAY _/" 4 . M v Rst 4OAH mc=1 executeés L}D « 10= 1000 times
I OUTER: MOV RS VR MC72 pxecutes 0
. INNER: DINZR3 :MC=2f executes 1001
LCALL DELAY © DINZR4, OUTER fmc=1* execulﬁlflm’-’
SIMP LOOP o
ORG 300H

1232] Insights on Embedded System

Scanned with CamScanner

NOP
NOP

; MC =1, executes 1 time -

; MC =1, executes 1 time
END

In 8051, crystal frequency is 11.0592MHz and one machine cycle /

(MC) is equal to 12 clock cycles.
So, 1 MC=12/11.0592MHz = 1.085ps.

Total machine cycles required to execute.above codeis
=1+1x100 +2x1000 + 2x100+ 1 + 1 + 1 4 1
=2305 MC

Total time duration = 2305 x 1.085us = 2.5rhs

However, to generate. the specified delay,

total repetition, initial value of R4 and R3 aidng with number of NOp:

required. In this case, we have to follow following steps:
® Listthe givenvalues . - e T

Time required (T) = 2.5ms

1 MC (t) = 1.085 s (for 8051 microcontroller)

Calculate total required machine cycies
Total MC = T/t = 2305

If total required MC is greater than 255 then one way to
generate more than 255 MC s by using nested loop:

Values and jterations to generate required MC
We need to know the MC required by-branching instruction and

others instructions used in the code, im above case it is 2 MC for

o

Amplement the - physical

VHDL

ntroduction

yHDL Code Structure

Data types, Data Objects ang Operators
statements in VHDL

st_andard Architectures

FSM Design

10.1 Introduction
we need to determinel

VHDL is a hardware description language. It is used to describe the

wehavior of an electronic system, which_further ‘enables designer to °

system. VHDL stands for VHsic Hardware -
bescription Language, where VHSIC is an acronym for Very High Speed
integrated Circuits. '

The main purpose of VHDL is to model and synthesize digital circuits.
simulation and testing of the design for the optimum operation can be done

Jusing VHDL model of the system. Also, digital integrated circuits for
Aparticular . operations can be created using VHDL or other hardware

description languages. Finally, VHDL code can be used tov create act_t;al
functional system. Hence, VHDL code can be used either to l.mpEEmentt e
tircuitin a programrﬁable device or can be for.warded for fabrication.
VHDL Invariants ~

‘DINZ, 1 MC for MOV and 1 MC for NOP.

Set outer loop initializer as 100 (64H) or 200 (C8), and assume
inner loop initializer as 10 (0AH). Then, adjust the. value of
initializer of'inner loop based on requirement. For few missing
MC, add number of NOPs if required. Also we can add another
loop in the nested structure, to generate higher values of delay.

——

1234 Insights on Embedded System

Itis not case sensitive.
. Itis not sensitive to white space.

¥ . B es t;'—" .
- Comments begin with two consecutive dash
= is usage is optional in many cases. :
Parenthesis usage is optio sSaein

N = i inated wit .
Every statement in VHDL is termin ts placed inside

en
= ~ancurrent. Only statement Hally.
. are inherently con sequen .

I jcture tal sections:
10.2. VHDL Code Structu ¢ at least the three funlda\tnenm"emon >
VHDL code comprises © "o e TuRE. LIBRARY i 2

| d
UBRARY Declaration, ENTITY 2" oL [235
— —_ - = =

Scanned with CamScanner

ii.

1236 Insights on Embeddeq System

be re-used or shared by various desjgr,..

E;l??r?(ﬁsr;e;;:s c:;;?fg 15,212232:5 of the system. ARCHITECTURE °°ntains_;
the code that describes how the circuit should function.
i. LIBRARY DECLARATION

The general from is:

) LIBRARY LIBRARY_NAME; | _

USE LIBRARY_NAME.PACKAGE_NAME.PACKAGE_PARTS;

Example:

LIBRARY |EEE;

USE Ieée.std_logic_llm.ali;

The libraries STD and WORK are made v
not required to declare. However, STD_
library must be_declared when STD_LO
design. Similarly,
related

isible by default, so they 3re.
LOGIC_1164 package of IEEE

GIC data type is used in the
for. SIGNED and UNSIGNED data types and jis
arithmetic and comparison operations, backage
STD_LOGIC_ARITH of LIBRARY /EEE must be declared, '

ENTITY y

. The VHDL ENTITY declaration describes t
representation of the circuit, An ENTIT
output pins with its specification such a
mode. '
Its syntax is:

ENTITY ENTITY_NAME IS
PORT(

PORT NAME: SiGNAL_MIOD_E SIGNAL_TYPE;
PORT_NAME: SIGNAL_MOBE SIGNAL_TYPE;

);
END ENTITY_NAME;

Here, ENTITY NAME
SIG NAL_MODE which de
INOUT, or BUFFER. 1 an
bidirer.tiona?. The
INTEGER, etc.

and PORT_NAME are identifiers. The
fines the direction of signal can be IN, OUT, *
d OUT are unidirectional pins, while INOUT is

data type or SIGNAL_TYPE can be BIT, STD_LOGIC,

i

: Im,pm 1: Entity of AND gate With ¢
Ly

he interface or the-external
TY is a list of all input and
s data type and data direction '

WO inputs

. €ach of one bit,
ENTITY AND_GATE [$ '

PORT(.
INA : INSTD_Logic:
+ IN_B 1 INSTD_Logi, |
OUT_Z : 0UTSTD (01
);
' END AND_GATE;

ample 2: Entity of 4x1 MUX with each input of three hits
ENTITY MUXIS
PORT(

A B,C,D : INSTD_LOGIC_VECTOR(2 DOWNTO 0);
SEL: INSTD_LOGIC_VECTOR(1 DOWNTO ©);
- 20Ut STD_LOGIC_VECTOR{(2 DOWNTO 0)
)

END MUX;
ARCHITECTURE | -
The ARCHITECTURE describes how the circuit should fu|_1ct|$:. Iet
describes the internal implementation of the associated entnty:h ';:e
are several models that are followed by architecture to describe :
operation of the circuIt_.
The general form of ARCHITECTURE is: | s
ERCHITECUTEE architec_ture__name OF entity_na

[declarations]
BEGIN

[code]
END architecture_name;

’ i jonal
Here, declarative part IS opt. o
Code part Inc

e designed:

gnal and constant

and includes si ments

te
s different VHDL sta
declarations.

b
describing the system t0

g oL 12371

Scanned with CamScanner

Example 1: ARCHITECTURE of AND gate with two inputs each of ope bit,

Architecture and_arch of and_gate is

Begin

8 SIGNED.,
o . 'a& -2 \\'3 Ve I gy Auaie ity
oUT Z<= IN_A AND IN_B; \9! owd Q1R SV6% iA 2% tomgpve NEGATIVE - |USED IN ARITHMETIC
END and_arch;

OPERA
POSITIVE thvﬂguimo}e'w‘ A
To e G U2
‘———————______————__________

TIME, VOLTAGE USEDIN
SIMULATION

= Unresolved, ‘X’ -

' —Forcing High, ‘Z' - High
Impedance, ‘W' — Weak unknown, ‘L’ - Weak Low, ‘H' - Weak

High, ' — Dor’t care. STD_LOGIC levels are intended for
- simulation only. When a node has two STD_LOGIC signals .
connected, then conﬂicfing logic levels are resolved
automatically in case of STD_LOGIC whereas such conflict is not
resolved in STD_ULOGIC. For arithmetic operations using ‘
STD_LOGIC, packages STD_LOGIC_SIGNED and
STD_'LOGIC_UNSIGNED must be used. -

ii. User Defined Data Types

10.3 Data types, Data Objects and Opqrators
1. Data Types oo

Here, various logic levels represent: ‘u’

Data types represent the type of information stored by the var;
b riable} Forcing Unknown, ‘0’ - Forci .
¥ ’ - llng LQW, _1:

or constant. It can be of two types which are discuss

ed in tha
following section. hel

v

i. Pre-Defined Data Types

- VHDL contains a series of pre-defined data types. Such da
definitions can be found in various packages or libraries,
o

ta type .

Package STANDARD of library STD includes BIT, BOOLEAN
INTEGER, and REAL. - ’
o Package STD_LOGIC 1164 of

‘ library IEEE includes
STD_LOGIC and STD_ULOGIC, '

Various pre-defined data types are listed in the table below:

VHDL allows users to define their ‘own data types. Theﬂrte .ar_.e l,W'_J.' S
: ' ries of user- defined data types. e
N ik LEVEL/RANGE DESCRIPTION | e s ' '
_.a. _ User-Defined Integer Type .
= i 21RIc VL 0,1 General form: gd b :;LUE
: : 0 HIGH-VALUE;
2 BIT_VECTOR 2 LOGIC LEVEL 0.1 TYPE TYPE.NAME IS RANGE LOW_VALUET
i ' Example: ;
3| sTD_togic 8 VALUED LOGIC | X,0,1,2,W, L H,- : TYPE TEMPERATURE S RANGE -125 T0 125;
T0 100;.
4 | STD_LOGIC_ VECTOR | 8VALUEDLOGIC | X.0'1 7 W L H,- ~ TYPE MARKS IS RANGED
iy Wy ey b=y 1=
| | . : b User-Defined Enumerated Type
5. STD_ULOGIC 9 VAL - U, X,0,1,Z W,LH - b : :
YT || ALUED LOGIC . General Form:) VALUEN}F
. ' - © 7yPE_NAME 1S (VALUEL, VALUEZ-
-+ |STD_ULOGIC_VECTOR| 9 vALUED ogic | %% 0,1,z WLH] TYPE TFE- . ‘
7. BOOLEAN g TYPE COLOR IS (RED, GREEN, erated P is
N 2 VALUEs TRUE, FALSE bits requirement encoding of T:; specified:
P Ee—— : d on bi ieally, un!
8. IN . SRR Based on PI™> 4 automatically:
.__\& 2147483647 TO done Sequennaliv an : .

12147083647 |oon a2 BNUMEES, |

___...--"".‘- :
tem

1238 Insights on Embeddeq Sys

Scanned with CamScanner

2. DataObjects

+ is an item in VHDL that has both name and a specific type,
An ObjEC I

i ignals, variables and constants.
data objects are signals,
Commonly used ! :
i. Constants

Constants are used to assign defaultvalles in the code. It can be
declared in PACKAGE, ENTITY or ARCHITECTURE. Declari,
CONSTANTS in PACKAGE makes if global, since PACKAG

used by several entities. If it is declared in an ENTITY,
shared by all ARCHITECTURE that follows that ENTI
defined within ARCHITECTURE the sco
limited to that ARCHITECTURE only.

Declaration:

it can phe

TY. Whey
pe of CONSTANTS are

CONSTANT name : TYPE := value;
Examples:

CONSTANT high : STD_LOGIC =1
CONSTANT count : INTEGER =10;

ii. Signal
&3 Signal is used to pass value in and out of the circuit and within
LY c! - - - - .
;F-' £)Internal units. it simply represents Interconnection of circuit.l_ﬁ_\ﬂ;
Ta AT " ! Sin . Z i

: E T

; %3 may not be updated immediatelg, since the value s more fikely:
. Stanal seny)
ﬂ on 0 get updated after th

e_comp
ROCESS, FU RQC

an be declared in PACKAGE, ENTITY
Declaratiqn: '

letion of jts corresponding
l:(nl-?“"d_'ﬂ“""\a).

or ARCHITECTURE, | \

SIGNAL name: TYpEg [range] [:=
The part inside the s

Present depending up
of initialization,

Examples:

initial_value];

quare bracket may or may not be
on data types ysed and requirement

SIGNAL start :5TD_LOGIC :=*

SIGNAL count ; INT
jil. Variable

0’;
EGER RANGE 0 T 100;

h-__

E Cén be‘

- Similar to CONSTANT, it

dated; new valy

can be declared and useq ;
+ PROCEDURE.

Declaration:

VARIABLE name: type [range] [:=

' initial valye];
Examples:
VARIABLE count; INTEGER :=0.

~ VARIABLEa: STD_LOGIC_VECTOR(7 pownTo 0);
Operators

The various operators supported by VHDL are tabulated below:
(1 .
i. Assignment Operators

o - vHOL [281]
e —

Scanned with CamScanner

SN|Operator Assign Value To Examples .
P i <= |Signal X <=1 Ye="101;
{""“"‘m’f‘\ 2, = |Variable, constant, 2:="1001",
U‘ e I3
SQ\%“EQ' il i Zis avariable
Vouigh\e : . -
is,,f,'”?%—,- 3, = Individual Elements or with|W <= (0=> ,_{%
IR e OTHERS OTHERS_ =>'0") IC:‘E'_I
LSB assigned 1 and|®*™"
othersas 0
ii. Logical Operators :
| e
* |SN|Operators| Description/Example |Supported Data Typ
Inverts the signal, High
Limar Precedence
Result high when both
S inputs is high BIT
e Result high when one of|sTp_LOGIC
3.|oR the inputs is high STD_ULOGIC
: OR
=aNAND b ~ |mim_vect
4. INAND X<=aNA — e IR
> 2N bit|STD ULOG!C_\."ECTOR
F TG cOmp|ement5 the =
6. {XOR - when XORed with 1
Complements the bit
. S
7.[XNOR | b en XNORed wlthﬂ/

“iv.

V.

1242 Insights o

jii. Relational Operators

=

r;'m - Description \'
1 = Equal to '
/= Not equal to
% ; S,
3. < Less than
‘ 4. % Greater than
. 5. <= Less than or equal to
6. >= Greater than or equal to

Arithmetic Operators

SN | Operator Meaning Description
1 + Addition
2. - Subtraction
3. * Multiplication
4. |- < Division | Limited to powers of
e two
5. *+ Exponentiation | Limited to powers of
two
6.. MOD Modulus X MOD Y results value
: with sign of Y
7 REM Remainder X REM Y results value
: with sign of X
8. ABS Absolute Value |

Avoid Using MOD

numbers

operator when

dealing with negative

Shift Operators
I

SN | Operator
T e

Meaning

Description

1 SLL- Shift Left

Logic
2, SRL
Logic

Shift

—]

— |

3 SLA

-

——]

Left

n Embedded System

____'————___
Shift Right

Zeros are fed from one end
and bits are lost from other
end. Sign bit never changes in
arithmetic shift,

“10101” SLL '3 results in

Arithmetic
'_-__-—-_'—-———_._

‘01000 -

vi..

Shift
Arithmetjc

Rotate Left

Concatenation Operator

The concatenation operator (&

similar data type. The following

. concatenation operator,

Example:

signal A, B : std_logic_vector (3 downto 0);
signal C: std_logic_vector (5 downto 0);

signal D : std_logic_vecter (7 downto 0);

C <= A & uoon :

D<=B&A;

10.4 Statements in VHDL -

1

Concurrent Statements

PR

Concurrent Signal Assignment
Syntax:

Target <= expression;
Examples:

A<=BNANDC;

X <= (D OR E) AND (F AND
Conditional signal Assignment
Syntax: .

. Target < = expression wh
expression Wh

expression;

Right |-

_____'_-—'——-____

“1001”

“0110”
e e}

ROL 2 results in

) is used to combine values of

example will illustrate the use of

- Signal A and B of 4 bits
- Signal C of 6 bits
-- Signal D of 8 bits

— 4 bits of A and two _bits
“00" assigned to C

- 4 bit of A and B
combined and assigned to
D

G);

en condition else

en condition else

M

Scanned with CamScanner

»

iv.

mple: N
" : <='1" when (L= 0’ AND M = ‘0’) else

y” when (L="1" AND M = ') else
‘0’
selective Signal Assignment
Syntax: .
with choose_expression select
" target <= expression when choices,
_ ' expression when choices;
Example:
with SEL select
M_OUT <= A3 when “11”,
A2 when “10”,
Al when “01”,
A0 when “00”,
‘0’ when others;
Process Siatement s :
Syntax:
Iabél: process(sensitivity list) -
begin e
sequential statements
end process label:

Sequential Statements

I

Signal Assignment
Syntax;

target <= expression;

0 IF — {{mllé wolg 'I)Yowb)

Syntax:

if (condition) thep

{ sequence of statements }

elsif (condition) then

{ sequence of statements }

Here D is of 8 bits. And D(7)
represents the most
significant bit. So if we use D
only then it represents 8 bit
data whereas if we use D(n)
then it represents any
specific bit (n™) out of many

else
{ sequence of statements)
end if;
Example: \
if (SEL="111") then
F_OUT <= D(7);
elsif (SEL =*110") then
F_OUT <= D(6);
elsif (SEL = “101”) then :
F_OUT <= D(1); bits.
else
F_OUT<=0;
end if;
iii. CASE statement
‘ Syntax:

case (expression) is
when choices =>
) sequential statements’
when choices =>
| sequential statements
-- (optional)

=>
Example; when others !
Xample; sequential statements
A<=B NAND G
_ d case,;
X<= (D OR E) AND (F AND G); .
| . Example:
case (ABC) is
. - ; B " when 100" =>
. | . vHDL (2451
|244| Insights on Embeddeq System \—///

| .

Scanned with CamScanner

F_OUT <=1’

when “011" =>
F_OUT<="1;

" when “111” =>
F_OUT <="1’;

. when others =>
F_OUT <=0';

end case;

10,5 Standard Architectures ,
(us® boolean loarte ang

1. Dataflow Style Architecture ¢concorvew sigral ianw,@

Datgf.iow style architecture specifies a circuit as_a concurrent
repres i flow of data through the circyit In this
modeling, 2t

_ the internal working of a system is implemented using
concurrent statements, It can be used for small and pPrimitive circuits
~ but not for complex designs. In this style of architecture,

there i§ a change in signal of right hand side, the exp
* evaluated and assigned to left hand side.

whenever
ression is

Example:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY HALF_ADDER IS
PORT(' ;
A, B: INSTD_LOGIC;
S, C:ouT STD_LOGIC
); ' . s
END HALF_ADDER; |

A
azcca:\:TECTURE HALF_ADDER_ARCH OF HALF ADDER IS

S(:AXORB; 1

C(:AAND B;

END HALF_ADDER ARCH:

1246] Insights on Emhedded Syst,
Stem '

Behavior Style Architecture (usgy protwy stalemads)
The behavioral style architectyre mod

: els how the circyi)
 behave to the circuit inputs, This p, he circuit outputs wis

process statements.
Example:

" LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

" ENTITY HALF_ADDER IS

PORT(
A, B: IN STD_LOGIC;
S, C:OUT STDTLOGIC
)
END HALF_ADDER;

ARCHITECTURE HALF_ADDER_ARCH OF HALF_ADDERIS AD is I seuibs

- ioh oF e plocs)
BEGIN .J: .3 Lﬁiﬁ: ,“;“i',\?w
' PROCESS_ADDER: PROCESS (A, B) R e
BEGIN - . ; . weedd . s
= . dor -0F Gefwhon i
s g ANORE; . (y sonkial iR @
C<=AANDB; -~) oew)

END PROCESS PROCESS_ADDER;

- END HALF_ADDER_ARCH;

- iaghantisdion)
structural Style Architecture (VS0 omporerd i |
fhe structural style architecture is a modular_approach to coding

which suEports-hierarchica'. design which is essential to understand .

lex digital designs. Modular designs enhance understandablity
ow-level functionality into modules. These 'mad‘ules
used int diff signs resulting in save of design t‘lme.
el y not be efficient for simple designs.

7 ¥ I 5

H(IWEVEl, the iO“OWI are tlle e"Elal StEpS {OI w“t"'g St“-IICtu al
ng g i .

s

by combining |

del code; ' e
\ o ; vHDL |247|

———_ﬂ#‘-‘-—-—-—_

Scanned with CamScanner

o

y and architecture implementations for th
r modules which are within our system my
5t

Initially the entit
individual gates 0

. be defined.
tity declaration of our system is done, similar to othe
r

" The en
models.
Different components used in our dési_gn are declareq With;
the declarative part of architecture. Component declaration .n
similar to entity declaration, only. keyword entity o [;S
replaced by keyword component. 5
Syntax of Component Declaration
QOMPONENT COMPONENT_NAME [IS]
PORT(B
PORT_NAME: SIGNAL_MODE SIGNAL_TypE-
PORT_NAME: SIGNAL_MODE SIGNAL_TYpE:

A -
END COMPONENT [COMPONENT_NAME};

o Internal signals, which are the intermediate oufput signals of

use jeee.std_logic_1164.a]|;

— \a

%gtq.vh

jibrary ieee; .,

entity and_gate is
port .
X, ¥: in std_logic; .
w: out std_logic

."- "];

L]

one module .fed into another module as input signals, are
declared. ' '

. instances of all modules are created 4nd mapped in the
a_rc@fecture })ody. Mapping can be done using direct mapping

: q_s_ implied mapping.” In. direct mapping, each of the internal
agnals and signals of entity of the system are _directliz associated
v_mth' the signals of corresponding components. . Whereas in
lfglziitﬁpping., only internal signals and signals of entity of
_the iy be:re Ilsted: Though it uses less space, but it requires

placed in the proper order.)

* Finally,

1248 Insights on Embeddeqy Syst
| em .

D) using structural mode|
-9

use ieee.std_logic_1164.all ;

library ieee;

entity or_gate is
port(
X, y:in std_logic;
w: out std_logic

)i

end and_gate; end or_gate;
architecture and_ah of and_gateis | architecture or_arch of or_gate is
begin begin
process(x, y) " process(x, y)
begin begin
W <= X andy; w<=xor A
'end process; - end process;
end and_ah; | endor-arch; '
(behauiofok ovd»lkelra) . (\,ehwim] orc“kf-\"”*)-
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY TEST IS
PORT(

(g’\f\;dvval wl;ﬂka-\

A B, CD:IN STD_LOGIC;

Z: QUT STD_LOGIC

)i
END TEST;

'ARCHITECTURE TEST_ARCH OF TEST 15

'COMPONENT AND_GATE 1S

“PORT (

X, Y: IN STD_LOGIC;

__.-—-"-'-'—-_—
vHDL |249]

Scanned with CamScanner

N &

W: OUT STD_LOGIC

9 -

COMPONENT OR_GATE

PORT (
X, Y: IN STD_LOGIC;
W: OUT STD_LOGIC
);
END COMPONENT;
e\i{ —~ SIGNALE, F: STD_LOGIC;
"I BeGIN s

U1: AND_GATE PORT. MAP (X =>A, Y =>B, W => E);

U2: AND_GATE PORT MAP (X =>C, Y => D, W => F);

U3: OR_GATE PORT MAP (X =>E, Y =>F, W => 2);
END TEST; -

10.6 FSM Design ' . '

f Frnm_e State Machines (FSM) constitute a special m'cndei]ing techniqu
or sequential logic circuits. The digital systems, in general, can be expre:[sez
as a sequence of actions which can be realized using FSM. -

inputs ') -
' puts —p ' — outputs

Combinational

- " Logic.
‘Present |
State Sl\ie:t
ate
Sequential '
Lowle +—— clock
) [4¢——— reset

Figure 10.1: Geyy
eneral block diagram of Finite State Machine

A FSM is specifi
ie i iti
ol ey P d by five entities: symbolic states, input signals
A state function ang output functi t
nction, A sta

1250| Insights on Embeddeg Syst
stem

te specifies 3

na————

s
jgnals: The general block diagra

combinational part has two inputs -

rlave internal condition of a system g t
another with time. The next-state
e of the system. The output

o he.FSM transits from one state tg
. ‘ctlun 's used to determine the next
nction specifies the value of the output

m of FSM is shown in the figure 10.1.

. cons

external input and present state ~ and

ko outputs; next state apd external output. Whereas, the sequential
section has three inputs — clock, reset, and next state ; i

- and one output in a

form of present state. Since the flip flips are implemented in sequential
ogic, clock and reset are part of this section.

If the output of the machine depends not only on the present state
put also on the current input, then it is called a Mealy machine. Otherwise, if
it depends only on the current state, it is called a Moore machine.

1. Design of Sequential Section ;
PROCESS statement is required for sequential section. The clock and
rese% signals appear in the sensitivity list of PROCESS statement.
" When reset is asserted, present state will be set to initial state of the
- system. In_other cases, present state will change to next state at the
proper clock -é'c'l"g"é'.'"A typical design template for the sequential
section is given as: '
PROCESS (reset, clock)
BEGIN
IF(reset = 1) THEN
-present_state <= Initial_state;
ELSIF {clock event and clock = ‘1) THEN
present_state <= Next_state;

END IF;
END PROCESS;

2. ' Designof Combinational Section i
In this section, the code does not need to be S:[q:lhen th'e input and
code can be used. If sequential ¥ im.pi.e ki PROCESS statement.
present state will be the part of sensitivity list of o wed 10

en
Within the PROCESS statement, CA5% ;lﬂ:::: A basic template
implement the actions and conditions of each state:
im .
action is shown as:

: for the combinational s
yHoL (251

_‘

Scanned with CamScanner

nmrrent

PROCESS

BEGIN
CASE present_ STATE IS
WHEN STATEO =>— within when structure of case,

-- may contain actions and conditiong
WHEN STATEL => .
‘ -- number of when structure s

WHEN STATE2 =>-- defined by number of states in FSM

(input, present_state}

When OTHERS =>.

END CASE;
END PROCESS;

SOLUTION TO IMPORTANT QUESTIONS

Problem 1: Simple NAND Gate with two inputs, each input of single bit

Solution:
LIBRARY IEEE
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY NAND_GATE IS

VHDL is case
PORT | . . insensitive
lar :
IN_A, IN_B: IN STD_LOGIC; i
X_OUT: OUT STD_LOGIC Thedsyinbol <=is
L : used as
% .) i assignment
END NAND_GATE: . operator,
ARCHITECTURE nand_arch OF nand_gate |S
BEGIN
proc: PROCESS {in__a, in_bi
BEGIN
¥_OUt<=in_a NAND in_p;
END PROCESS proc;
END nand_arch;
1252] Insights on Embeddeg iy T

oblem %

write a VHDL code to implement 4 X1

MUX with each i
i | each input of 3
L1BRARY IEEE
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY mux_4x1 1S

PORT(

For signals with more than one
bit, we need to use
std_logic_vector(n-1 downto 0}
where n is number of bits,

in_a, in_b : IN STD_LOGIC_VECTOR (2 downto 0);
“in_c, in_d : IN STD_LOGIC_VECTOR (2 downto 0);
SEL: IN STD_LOGIC _VECTOR(2 downto 0);
z_out : OUT STD_LOGIC_VECTOR (2 downto 0)
%
END mux_4x1;
ARCHITECTURE mux_arch OF mux_4x1 15
BEGIN
| oroc: PROCESS (in_a, in_b, in_c, in_d, SEL)
BEGIN
IF (SEL = “00”} THEN
z_out<=in_a;
“ ELSIF (SEL=“01") THEN
- 7_out<=in_b;
ELSIF (SEL = “01") THEN
z_out<=in_C;

For signals requiring more
than single bit, we need to use
double quotation mark for brt
values. For example:

ELSE #1010

z_out <= in_d;
END IF;
END PROCESS proc;

A i END mux_arch;
Problem 3: Write a VHDL code to implement D flip-flop.
ro 4 .

Solution: : '
library \EEE; '
1164.ALL;
use |EEE.STD_LOGIC. vHoL (2531

__A
Scanned with CamScanner

~ begin
entity DFlipflop is i . S process (CLK, CLR)

" Port (, begin
b, clk : in STD_LOGIC; | | -

if (CLK'eve ~ iy
qQ : out STD.LOGIC (CLK'event and CLK = 0') then

if (CLR ='1') then

-CLK’event and tLK =
represents rising edga

of the

h - ' clock !
’ pulse. tmp <= "0000"
end DFlipflop; P <="0000";
else
architecture Behavioral of DFlipflop is -, . tmp <= tmp + 1;
begin end if;
" process (D, CLK) _ _ end if; _
begin = : . ' end process; —_—TT
: gt = : ts falling edge of th
if (CLK'event and CLK =1) then . Q <= tmp; zleg:::eur:sz alling edge of the
Q<=D; end Behavioral;
‘end if;) . n—
end procesé- Problem 5: Write a VHDL code to detect a sequence of “1001
" end Behavioral; - ' : Solution: _ 3 o L
' : ' The ESM for the detection of the sequence is given by following
Problem 4: Implement a counter that counts from 0 to 9 using VHDL code e diagram. '
Solution:
library ieee;
use ieee.std_logic_1164.all; D .

use ieee.std;logic_arith.all;
use ieee.std_logic_unsigned.all;

entity Counter_Code is
port(:
CLR:in std_logic;
CLK :in std_logic;

Q:out std_logic_u:ec'tor (3 downto 0)
); '

~end Counter_Code;

.fighl;re 10.2: FSM for detection of sequence “1001

rchi : K. VHDL Code '
architecture Behaviora| of Counter Code is (ibrary IEEE; L 12551
; _ ; | _ : =
_/ T ’ .
1254] Insights on Embeddeq System _ _
A .
Scanned with CamScanner

D LOGIC_1164.ALL;

else

NS <= QL

use |EEE.ST .
entity Sequence_State 15
end if;
port
. x:in STD_LOGIC; ‘when Q2 =>2<= .
clk, RESET : in STD_LOGIC; if(x = '0') then
. TD_LOGIC
z:out STD_ N§<= 03;
); else _
end Sequence_State; Né -
ioral of § State | Gl
i e
archltecture.Behawora of Sequence_state Is when Q3 => 7<= 0,
type state is (Q0, Q1, Q2, Q3, Q4); Ty
: Ty g if(x="1') then
signal PS, NS: state; .
begin NS <= Q4;
- else
sync_proc: process (clk, reset) s
begin) N&<=00;
if (resét ='1") then i e
PS <= QG, whnen 0,"‘;)‘14(: 17
- iffx="1"
elsif (rising_edge(clk)) then- (;) then |
PS<=NS; | e
end if; ehe
end pro NS s Gl
cess syn :
ync_proc; —_—
conil when others =>
m y ; =k
! _Pproc: process(PS, x) NS <= Q0;
begin
end case;
case PSis :
end process comb_proc;
when Q0 =>z <= 0/; end behavioral;
if(x="1") then . ks : :
NS <= Q1: Problem.6: Calculate the GCD of two numbers using VHDL
else _ .Solution:
NS <= QO: Functionality code to calculate the GCD of two nurnbn_ers is given as
endif, intX,Y; o
WhEI’l Ql = 7<= loJ; . whlletil
lf{}(= ‘0!] then { '
S NS <= Q2: s while(!GO);
1256 Insights on Emb dd ; - vHDL 12571
‘ €dded System :
. F
e ——
Scanned with CamScanner

=)

e
12581 Insights on Embeddeq syora—
m

X= NUMJ"
Y= NUMZ;
while(x 1= Y)
7

if(X<Y)
. Y= Y- XI
else -
: %= X- Y;
}
GCD=X;

} .
The FSM for the above code can be represented by following diaéram
RESET=1 - .

UPDATE X
C X=X-Y

UPDATE ¥
Y=¥-X

Figure 10.2; FSM for GCD pméessor

VHDL Code
library |EEE;
use lEEE.STDﬁLDG-ﬁC__llEtl.ALL:
entity FSM_GCD is

port (

RESET, CLK: in std_logic;
GO:in std_logic;

NUM1, NUM2: in integer;

GCD: out integer
e); ‘

end FSM'__GCD;

architecture Behavioral of Fsp Gcb is

type state is (start, input, check, updatex, updatey
signal PS, NS: state; ‘

begin

output);

* seq_proc: process (CLK, GO, RESET)
begin .
if (GO = "1') then
if (RESET ='1') then
PS <= start;
elsif (rising_edge[CLK]} then
PS <= NS; .
end if;
end if;

end process seq_proc;

tomb_proc: process (NUM1, NUM2, PS)
. variable X, Y: integer; '

“begin
i For variables, the assignment
bt operator is colon followed by
when START => equal symbol. (=)
'GCD =g For signalsl, the assignment
© . NS<=INPUT; operator is less than equal
when INPUT => symbol. (<=) J
X = NUM1; .
¥ := NUM2;
NS <= CHECK;
when CHECK => .
if (X>Y) then
NS <= UPDATEX;
- vHDL [259]
————————————

Scanned with CamScanner

Isif(x < Y) then
T N5 <= UPDATEY; .

else
NS <= QUTPUT;
end if;
when UPDATEX =>
XEX=Y;
ns <= CHECK:‘
when UPDATEY =>
' Yi=Y- X; .
ns <= CHECK;
when OUTPUT =>
GCD<=X;
NS <= INPUT;
when OTHERS =>
GCD <= 0;
NS <= INPUT;
end case;

end process comb_proc;
end behavioral;

Problem 7: Design and write the code for Decoder using VHDL.

[2076 Baisakh]

Solution:

VHDL code for 2 to 4 decoder

library ieee;
use ieee.std_logic_‘llSd..all;
entity decoder is
port(
_ atinstd_logic_vector (1 downto 0);
; b:out std_logjc_vector (3 downto 0)

_ end decoder;

1260 Insights on Embeddeq System

architecture decoder_arch of decoder is
begin
process|a)
begin
caseais

when "00" => b <= "0061";

when "01" => b <="0010"

when "10" => b <= "0100"

’

when"11" =3 h <= "1000";

when others => b <= "0000";

end case;
" end process;
end decoder_arch;

Problem 8:

. Write VHDL code for a full adder using two half adder and one or

gates,

[2075 Bhadra]
Solution:
AD— 2 PR
HA.
chH

BD—- | C2
| ¥ _T:l_"- e W o

G~ ey

f‘ ; C1 __/

VHDL coding for or gates:

Library ieee; '

Use ieee.std " logic_1164.all;
" ‘Entity or_gateis

port ('
a, b 1 in std_logic;
7:out Std_logic.
);
End or_gate;

Scanned with CamScanner

Architecture or_archis

Begin
z<=aorb;

Eﬁd or_arch;

VHDL code for half adgler:

L|brarv ieee;
Use ieee.std_logic_ 1164 all

Entity half_adderis -
port() .
a, b :in std_logic;
sum, carry_out : out std_logic
N ‘ .
End half_adder;

" Architecture half_adder_arch of half_adder is
Begin '
. prncess__adder: process (a, b);
begin '
.sum<=axorb;
carry_out<=aand b;
end process process_adder;
End half_adder_arch;

. VHDL code for full adder using two half adder and or gate:

.Library jeee;
use ieee.std_logic_1164.a]: |
entity fulladd is
_port(

a:in std_logic; -
b:in sty logic;

-—______h___ﬁ.___.. T e
1262
| Insights on Emhedded System —-——”‘/

- Probl

cin:in std_logic;
s :out std_logic;
¢ :out std_logic
)
end fulladd;

Architecture structural of fulladd i
Component or_gate is
port(
o a, b :in std_logic;
z: out std_logic
)i

End component or__gate:

Component half_adder is’
Port (_
a, b :instd_logic;
sum, carry_out : out std_logic
) .
end component half_adder;
Signal s1, 2, cl: std_logil:;
Begin .
HAL: half adder purt map(a =>a,b ->b
sum => s1, carry_out => cl);

HAZ: half_adder port map(a =>s1, b =>cin,

sum =>sum, carry_out=> c2);

" OR1: or_gate port ‘mapla=>cl,b=>c2,2=> c);

End architecture structural;

flop using process.

e DL coding for a JK flip ;
em 9: Write the VHDL coding [2075 Baisakh]

Solution:
Library ieee;
- Use ieee.std__logic_nﬁtl.au;
Use ieee.std_logic_arith.all;

vHDL]263|

Scanned with CamScanner

Usia jeee.std logic__unsigned.all,

_ Entity jk_ffis

rt# - . .
P j, k, clock :in std_logic;

q,qb :out std_logic
I
gnd jk_ff;
Architecture behavioral of jk_ffis
Begin g '
process (clock, j, k)
variable tmp: std_logic;
begin
if (clock = '1" and clock'event) then
(if (j="'0"and k="0") then
tmp := tmp;
elsif(j = "1 and k = '1’) then
o tmp := not tmp;
elsif {j ='0' and k ='1’) then

o tmp =04
else
tmp =1
end if;,
end if;
q<=tmp;
gb <= not tmp;
end process;

“End behavioral;

Problem 10:

Write an algorithm and VHD-L for a custom

processor that can |

cale -
ulates Least Common Divisor (LCM) of two numbers as a finite

state machine., - ¢
Solution:

[2074 Bhadra]

Tunctionaliw code to calculate the LC
Intx,vy,z, GCD;

while(1)

{

1264] Insights on Embeddeq Syst
em

M of two numbers is given as

z ioee.std_lOBIC: _
- Usejers vHDL (2651

while(reset);
x =numl;
y = num2;
z=x*y;
while(x =)
{

if(x < y)

else

}
GCD =x;

LCM =2/GCD;
}

. The FSM for the above code can be represented by following diagram

UPDATEY
y:y-x

UPDATEx
x=X-Y

Figure: FSM for LCM processor

‘VHDL CODE

Libtary iee€; |
Use ieee.std_logic__usa.all;
arith.all;

.-d

Scanned with CamScanner

T Entity fsm_kmis,

Port (. -
reset, clk: in std_logic;
num3, numz2:_in integer;
LCM: out integer
); _
End fsm_lcm;
Architecture behavioral of fsin_lcm is

Type state is (START, INPU
Signal ps, ns: state;
* Begin ' ' ¢
Seq_proc: process (clk, reset)
Begin |
if (reset '="1_') then
ps <= start;
elsif (rising_edge(clk)) then
h ps<= ris; ’
end if;
End process seq_proc;

Comb_proc: process (num1, num2, ps)
. Variable x, y, z, GCD: integer; ‘
Begin ' I
case ps is
when START =>
LCM <= 0;
_ ns <= |NPUT;
when INPUT => :
X :=numi;
Y = num2;
Z:=x*%y;
ns <='CHECK;
When CHECK =» '
if(x:> y) then

ns <= UPDATE 3
elsif(x < y) then x"- |

T, CHECK, UPDATEX, UPDATEY, OUTPUT).-

ns<=4y PDATEY,
else

ns <= QUTPUT;
end if;
when UPDATEX =>
X=Xy
ns <= CHECK;
when UPDATEY =>
.Y =Y -X
; ns <= CHECK;
when OUTPUT =>
‘ GCD := X;
LCM <= z/GCD;
ns <= INPUT;
when OTHERS=>
LCM <= 0;
ns <= INPUT;
end r.ése;
end process cofmb_proc;

End behavioral;

~ Problem 11: Write a VHDL code for 2 - bit input multiplexer.

1266] Ing; ;
edded s,
' Ystem

Solution:
- library ieee _
use ieee.std_logi:__ilﬁll.all;
entity mux_'_axl is

port(|
' in_a, in_b : in std_logic_vector (1 downto 0);
in_c, in_d:in std_logic_vector (1 downto 0); _
sel : in std_logic _vector(1 downto 0);
_z_out : out std_logic_vector (1 downto 0)
)i

end mux_4x1;

architecture mux_arch of mux_4x1is

begin)

b, in_c, in_d, sel

.© proc: process (in_a, in
- I VHDL 12671

Scanned with CamScanner

[2072 Magh]

1253[Iﬁsi ' - '
: ghts on Emp ‘ '
. edded System & I e

E—

begin i
" el 00" then
zZ_out<=in_3
elsif (sel = “01”) then
Z_out <=in_b;

els]'f I:SEI = ”01"} thEn
Z_out<=in_c;

else

end if;
end process proc;
end mux_arch;

Z_out<=in_d;

| | REFERENCES

{ frank Vahid, Tony Givargis. Embedded System™ Design: A Unified
: ie

Hardware/Software Approach. N i
| oy - Ivew lersey: John Wiley & Sons, Inc.,

shibu KV.In troduc_t:'on to Embedded Systems. 2" ed. McGraw Hill Educati
(India) Private Limited, 2009. "

mMuhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinley. The 8051
Microcontroller and Embedded Systems. 2™ ed. New Jersey: Pearson
Education, Inc., 2011.

peter J. Ashenden. The VHDL Cookbook. 1% ed. Peter). Ashenden, 1998.

Douglas L. Perry. VHDL Programming by Examples. 4™ ed. New York: The
McGraw-Hill Companies, Inc., 2002.

M. Morris Mano. Computer System Architecture. 3 ed. New Jersey:
" pearson Education, Inc., 2007.

William Stallings. Computer Organization and Architecture. 10" ed. New
lersey: Pea'r,son Education, Inc., 2016.

william stallings. Operating Systems. Ef" ed. New Jersey: Pearson Education,
Inc., 2008.

__---__'_—
I e vHDL |269]

 —

Scanned with CamScanner

